[1]柏宁丰,王璐,冯程,等.基于周期金属柱的Ka波段曲折线平面行波管[J].东南大学学报(自然科学版),2018,48(6):1159-1163.[doi:10.3969/j.issn.1001-0505.2018.06.025]
 Bai Ningfeng,Wang Lu,Feng Cheng,et al.Ka-band microstrip meander-line traveling wave tube with periodical metallic rods[J].Journal of Southeast University (Natural Science Edition),2018,48(6):1159-1163.[doi:10.3969/j.issn.1001-0505.2018.06.025]
点击复制

基于周期金属柱的Ka波段曲折线平面行波管()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
48
期数:
2018年第6期
页码:
1159-1163
栏目:
电子科学与工程
出版日期:
2018-11-20

文章信息/Info

Title:
Ka-band microstrip meander-line traveling wave tube with periodical metallic rods
作者:
柏宁丰王璐冯程沈长圣樊鹤红孙小菡
东南大学电子科学与工程学院, 南京 210096
Author(s):
Bai Ningfeng Wang Lu Feng Cheng Shen Changsheng Fan Hehong Sun Xiaohan
School of Electronic Science and Engineering, Southeast University, Nanjing 210096, China
关键词:
微带曲折线 行波管 周期金属圆柱 介质电荷积累
Keywords:
microstrip meander-line(MML) traveling wave tube(TWT) periodical metallic rod(PMR) dielectric charging
分类号:
TN124
DOI:
10.3969/j.issn.1001-0505.2018.06.025
摘要:
提出了一种Ka波段的周期金属圆柱结构微带曲折线行波管,在原有微带曲折线结构的基础上,将周期金属圆柱结构加载在微带线的平行线中间,可以有效地增加金属面积,降低电荷积累效应,提升曲折线行波管的输出功率及增益平坦度.对该结构进行了冷特性仿真及波注互作用仿真,仿真结果表明,使用MML-PMR结构可以减少42.65%的介质表面.基于该结构设计了工作在Ka波段的行波管.使用MML-PMR结构改善了介质电荷积累现象,电荷积累导致的升压降低为原有结构的12.5%.该结构在30 GHz能够实现最大66.2 W的输出功率,最大增益为26.74 dB,在22~42 GHz的工作频率范围内该结构的增益范围为24.83~26.74 dB,增益波动低于2 dB,较为平坦.射频效率可以提升到12.79%.
Abstract:
A microstrip meander-line(MML)traveling wave tube(TWT)with periodical metallic rods(PMRs)is presented to improve the output power and bandwidth of TWT. Based on original MML structure, PMRs are added between the two parallel metal lines, perpendicular to the transmission direction, for each unit cell. The MML-PMR structure can increase the metal cover area for MML and decease the dielectric charging effect of MML TWT. Cold tests and beam-wave interaction simulations were conducted for this structure. The simulation results show that the dielectric area can be decreased by 42.65% using MML-PMR. A traveling wave tube is simulated based on the MML-PMR at Ka band. The dielectric charging problem can be greatly improved by MML-PMR, the voltage induced by dielectric charging accumulation can be reduced to 12.5% that of MML structure. The output power of the MML-PMR TWT is 66.2 W at 30 GHz, corresponding to a maximum gain of 26.74 dB; the output power gain varies from 24.83 to 26.74 dB across the entire working frequency range from 22 to 42 GHz. The RF efficiency can be increased to 12.79% for the MML-PMR TWT.

参考文献/References:

[1] Cai J, Wu X P, Feng J J. Traveling-wave tube harmonic amplifier in terahertz and experimental demonstration[J].IEEE Transactions on Electron Devices, 2015, 62(2): 648-651. DOI:10.1109/ted.2014.2377914.
[2] Aloisio M, Casini E, Ginesi A. Evolution of space traveling-wave tube amplifier requirements and specifications for modern communication satellites[J].IEEE Transactions on Electron Devices, 2006, 54(7): 1587-1596. DOI:10.1109/ted.2007.898243.
[3] Sengele S, Jiang H R, Booske J H, et al. A selectively metallized, microfabricated W-band meander line TWT circuit[C]//2008 IEEE International Vacuum Electronics Conference. Monterey, CA, USA, 2008: 18-19. DOI:10.1109/IVELEC.2008.4556322.
[4] Bai N F, Shen M, Sun X H. Investigation of microstrip meander-line traveling-wave tube using EBG ground plane[J].IEEE Transactions on Electron Devices, 2015, 62(5): 1622-1627. DOI:10.1109/ted.2015.2411314.
[5] Liu L W, Wei Y Y, Shen F, et al. A novel winding microstrip meander-line slow-wave structure for V-band TWT[J].IEEE Electron Device Letters, 2013, 34(10): 1325-1327. DOI:10.1109/led.2013.2279168.
[6] Shen F, Wei Y Y, Yin H R, et al. A novel V-shaped microstrip meander-line slow-wave structure for W-band MMPM[J].IEEE Transactions on Plasma Science, 2012, 40(2): 463-469. DOI:10.1109/tps.2011.2175252.
[7] Mendel J, Quate C, Yocom W. Electron beam focusing with periodic permanent magnet fields[J].Proceedings of the IRE, 1954, 42(5): 800-810. DOI:10.1109/jrproc.1954.274515.
[8] Zhao C, Aditya S. Observation of oscillations in a TWT with poor-quality electron beam[C]//2016 IEEE International Vacuum Electronics Conference(IVEC). Monterey, CA, USA, 2016: 1-2. DOI:10.1109/IVEC.2016.7561881.
[9] Metlevskis E, Martaviius R, Katkeviius A, et al. Influence coefficients of constructive parameters of meander slow-wave system with additional shields[J].Electrical, Control and Communication Engineering, 2016, 11(1): 27-32. DOI:10.1515/ecce-2016-0009.
[10] Leou K C, McDermott D B, Luhmann N C. Dielectric-loaded wideband gyro-TWT[J].IEEE Transactions on Plasma Science, 1992, 20(3): 188-196. DOI:10.1109/27.142819.
[11] Dallos A, Smith B H, Bowness C. Simulation of rod charging in TWT helix structures[C]//International Technical Digest on Electron Devices Meeting. Washington, DC, USA, 1989: 199-202. DOI:10.1109/IEDM.1989.74260.
[12] Smith B H, Bowness C, Dallos A. Radio frequency amplifier: US, US5038076 [P]. 1991.
[13] Zhao C, Aditya S, Chua C. A microfabricated planar helix slow-wave structure to avoid dielectric charging in TWTs[J].IEEE Transactions on Electron Devices, 2015, 62(4): 1342-1348. DOI:10.1109/ted.2015.2402688.
[14] Cassivi Y, Wu K. Low cost microwave oscillator using substrate integrated waveguide cavity[J].IEEE Microwave and Wireless Components Letters, 2003, 13(2): 48-50. DOI:10.1109/lmwc.2003.808720.
[15] Bozzi M, Georgiadis A, Wu K. Review of substrate-integrated waveguide circuits and antennas[J].IET Microwaves, Antennas & Propagation, 2011, 5(8): 909-920. DOI:10.1049/iet-map.2010.0463.
[16] Xu F, Wu K. Guided-wave and leakage characteristics of substrate integrated waveguide[J].IEEE Transactions on Microwave Theory and Techniques, 2005, 53(1): 66-73. DOI:10.1109/tmtt.2004.839303.
[17] Bai N F, Feng C, Liu Y T, et al. Integrated microstrip meander line traveling wave tube based on metamaterial absorber[J].IEEE Transactions on Electron Devices, 2017, 64(7): 2949-2954. DOI:10.1109/ted.2017.2706368.

备注/Memo

备注/Memo:
收稿日期: 2018-06-27.
作者简介: 柏宁丰(1978—), 男,博士,副教授,bnfeng@seu.edu.cn.
基金项目: 国家自然科学基金资助项目(61101013,61871110).
引用本文: 柏宁丰,王璐,冯程,等.基于周期金属柱的Ka波段曲折线平面行波管[J].东南大学学报(自然科学版),2018,48(6):1159-1163. DOI:10.3969/j.issn.1001-0505.2018.06.025.
更新日期/Last Update: 2018-11-20