[1]施惠生,张林涛,吴凯,等.不同集料界面过渡区对氯离子传输特性的影响[J].东南大学学报(自然科学版),2018,48(6):1170-1176.[doi:10.3969/j.issn.1001-0505.2018.06.027]
 Shi Huisheng,Zhang Lintao,Wu Kai,et al.Influence of interface transition zone of different aggregates on chloride transport properties[J].Journal of Southeast University (Natural Science Edition),2018,48(6):1170-1176.[doi:10.3969/j.issn.1001-0505.2018.06.027]
点击复制

不同集料界面过渡区对氯离子传输特性的影响()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
48
期数:
2018年第6期
页码:
1170-1176
栏目:
材料科学与工程
出版日期:
2018-11-20

文章信息/Info

Title:
Influence of interface transition zone of different aggregates on chloride transport properties
作者:
施惠生12张林涛1吴凯12高云3张德东4
1同济大学材料科学与工程学院, 上海 201804; 2同济大学先进土木工程材料教育部重点实验室, 上海 201804; 3东南大学江苏省土木工程材料重点实验室, 南京 211189; 4上海建科检验有限公司, 上海 201108
Author(s):
Shi Huisheng12 Zhang Lintao1 Wu Kai12 Gao Yun3 Zhang Dedong4
1 School of Material Science and Engineering, Tongji University, Shanghai 201804, China
2 Key Laboratory of Advanced Civil Engineering Materials of Ministry of Education, Tongji University, Shanghai 201804, China
3Jiangsu Key Laboratory of Construction Materials, Southeast University, Nanjing 211189, China
4Shanghai Jianke Technical Assessment of Construction Co., Ltd., Shanghai 201108, China
关键词:
细集料 界面过渡区 孔隙结构 氯离子迁移系数 背散射图像分析
Keywords:
fine aggregate interfacial transition zone pore structure chloride migration coefficient back scattered electron image analysis
分类号:
TU528
DOI:
10.3969/j.issn.1001-0505.2018.06.027
摘要:
为探究不同细集料混凝土的界面过渡区对氯离子传输性能的影响,配制了不同集料体积掺量的天然细集料混凝土、钢渣细集料混凝土和再生细集料混凝土,采用背散射(BSE)图像定量分析、XRD物相分析、氯离子迁移系数测试方法和模拟孔溶液测试方法,研究钢渣细集料和再生细集料配制混凝土界面过渡区的微结构特点及其对混凝土性能的影响机制. 结果表明,钢渣集料具备水化活性,其水化产物连接集料与水泥基体,导致钢渣细集料混凝土界面过渡区孔隙率低于天然集料混凝土和再生集料混凝土,因此钢渣细集料混凝土氯离子迁移系数较低. 再生细集料混凝土中界面过渡区更为疏松多孔,且存在多种界面过渡区,导致再生细集料混凝土氯离子迁移系数远高于其他2种细集料混凝土.
Abstract:
In order to investigate the influence of interfacial transition zone on chloride transport performance, fine natural aggregate concrete, fine steel slag aggregate concrete and fine recycled aggregate with different aggregate volume fractions were prepared. Back scattered electron(BSE)image quantitative analysis, X-ray diffraction(XRD)phase determination, chloride migration coefficient test and simulated pore solution test were applied to study the microstructure characteristics of the interfacial transition zone(ITZ)in concrete made with fine steel slag aggregate and fine recycled aggregate and its influence on concrete performance. The results show that the steel slag aggregate possesses hydration activity, and its hydration product connects the aggregate with cement matrix, which makes the ITZ porosity in steel slag aggregate concrete lower than those of natural aggregate concrete and recycled aggregate concrete. Therefore, the fine steel slag aggregate concrete has a relatively low chloride migration coefficient. The ITZ in fine recycled aggregate concrete is more porous and has different types, resulting in the much higher chloride migration coefficient of fine steel slag aggregate concrete than those of the other two fine aggregate concretes.

参考文献/References:

[1] Zhou F P,Lydon F D, Barr B I G. Effect of coarse aggregate on elastic modulus and compressive strength of high performance concrete[J]. Cement and Concrete Research, 1995, 25(1): 177-186. DOI:10.1016/0008-8846(94)00125-I.
[2] Poon C S,Shui Z H, Lam L, et al. Influence of moisture states of natural and recycled aggregates on the slump and compressive strength of concrete[J]. Cement and Concrete Research, 2004, 34(1): 31-36. DOI:10.1016/s0008-8846(03)00186-8.
[3] Evangelista L, de Brito J. Mechanical behaviour of concrete made with fine recycled concrete aggregates[J]. Cement and Concrete Composites, 2007, 29(5): 397-401. DOI:10.1016/j.cemconcomp.2006.12.004.
[4] Toutanji H A. The use of rubber tire particles in concrete to replace mineral aggregates[J]. Cement and Concrete Composites, 1996, 18(2): 135-139. DOI:10.1016/0958-9465(95)00010-0.
[5] Park S B, Lee B C, Kim J H. Studies on mechanical properties of concrete containing waste glass aggregate[J]. Cement and Concrete Research, 2004, 34(12): 2181-2189. DOI:10.1016/j.cemconres.2004.02.006.
[6] 陈宏哲, 张雄, 毛若卿. 风淬钢渣替代砂在道路混凝土中的应用研究[J]. 建筑材料学报, 2009, 12(3): 306-309. DOI:10.3969/j.issn.1007-9629.2009.03.012.
Chen Hongzhe, Zhang Xiong, Mao Ruoqing. Application research on air quench steel slag as a substitute of sand in roadway concrete[J]. Journal of Building Materials, 2009, 12(3): 306-309. DOI:10.3969/j.issn.1007-9629.2009.03.012. (in Chinese)
[7] Frías M, San-José J T, Vegas I. Árido siderúrgico en hormigones: Proceso de envejecimiento y su efecto en compuestos Potencialmente expansivos[J]. Materiales de Construcción, 2010, 60(297): 33-46. DOI:10.3989/mc.2019.45007.
[8] Etxeberria M, Pacheco C, Meneses J M, et al. Properties of concrete using metallurgical industrial by-products as aggregates[J]. Construction and Building Materials, 2010, 24(9): 1594-1600. DOI:10.1016/j.conbuildmat.2010.02.034.
[9] Zaharieva R, Buyle-Bodin F, Skoczylas F, et al. Assessment of the surface permeation properties of recycled aggregate concrete[J]. Cement and Concrete Composites, 2003, 25(2): 223-232. DOI:10.1016/s0958-9465(02)00010-0.
[10] Yang K H, Chung H S,Ashour A F. Influence of type and replacement level of recycled aggregates on concrete properties [J]. Aci Materials Journal, 2008, 105(3):289-296.
[11] Xiao J Z, Li J B, Zhang C. On relationships between the mechanical properties of recycled aggregate concrete: An overview[J]. Materials and Structures, 2007, 39(6): 655-664. DOI:10.1617/s11527-006-9093-0.
[12] Poon C S,Shui Z H, Lam L. Effect of microstructure of ITZ on compressive strength of concrete prepared with recycled aggregates[J]. Construction and Building Materials, 2004, 18(6): 461-468. DOI:10.1016/j.conbuildmat.2004.03.005.
[13] Scrivener K L,Crumbie A K, Laugesen P. The interfacial transition zone(ITZ)between cement paste and aggregate in concrete[J]. Interface Science, 2004, 12(4): 411-421. DOI:10.1023/b:ints.0000042339.92990.4c.
[14] Brough A R, Atkinson A. Automated identification of the aggregate-paste interfacial transition zone in mortars of silica sand with Portland or alkali-activated slag cement paste[J]. Cement and Concrete Research, 2000, 30(6): 849-854. DOI:10.1016/s0008-8846(00)00254-4.
[15] Wu K, Shi H S,Xu L L, et al. Microstructural characterization of ITZ in blended cement concretes and its relation to transport properties[J]. Cement and Concrete Research, 2016, 79: 243-256. DOI:10.1016/j.cemconres.2015.09.018.
[16] Wong H S, Head M K,Buenfeld N R. Pore segmentation of cement-based materials from backscattered electron images[J]. Cement and Concrete Research, 2006, 36(6): 1083-1090. DOI:10.1016/j.cemconres.2005.10.006.
[17] de Weerdt K, Haha M B, le Saout G, et al. Hydration mechanisms of ternary Portland cements containing limestone powder and fly ash[J]. Cement and Concrete Research, 2011, 41(3): 279-291. DOI:10.1016/j.cemconres.2010.11.014
[18] 施锦杰, 孙伟, 耿国庆. 模拟混凝土孔溶液对钢筋钝化的影响[J]. 建筑材料学报, 2011, 14(4): 452-458. DOI:10.3969/j.issn.1007-9629.2011.04.004.
Shi Jinjie, Sun Wei, Geng Guoqing. Influence of simulated concrete pore solution on reinforcing steel passivation[J]. Journal of Building Materials, 2011, 14(4): 452-458. DOI:10.3969/j.issn.1007-9629.2011.04.004. (in Chinese)
[19] Bourdette B, Ringot E, Ollivier J P. Modelling of the transition zone porosity[J]. Cement and Concrete Research, 1995, 25(4): 741-751. DOI:10.1016/0008-8846(95)00064-j.
[20] Pang B, Zhou Z H, Cheng X, et al. ITZ properties of concrete with carbonated steel slag aggregate in salty freeze-thawenvironment[J]. Construction and Building Materials, 2016, 114: 162-171. DOI:10.1016/j.conbuildmat.2016.03.168.
[21] Yehia S, Helal K, Abusharkh A, et al. Strength and durability evaluation of recycled aggregate concrete[J]. International Journal of Concrete Structures and Materials, 2015, 9(2): 219-239. DOI:10.1007/s40069-015-0100-0.
[22] Wu K,Xu L L, Schutter G D, et al. Influence of the interfacial transition zone and interconnection on chloride migration of portland cement mortar[J]. Journal of Advanced Concrete Technology, 2015, 13(3): 169-177. DOI:10.3151/jact.13.169.
[23] 吴凯, 施惠生, de Schutter Geert, 等. 集料对氯离子在水泥基材料中自由扩散性质的影响[J]. 硅酸盐学报, 2013, 41(11): 1514-1520. DOI:10.7521/j.issn.0454-5648.2013.11.09.
Wu Kai, Shi Huisheng, de Schutter Geert, et al. Effect of aggregate on chloride diffusivity of cement-based composite materials[J]. Journal of the Chinese Ceramic Society, 2013, 41(11): 1514-1520. DOI:10.7521/j.issn.0454-5648.2013.11.09. (in Chinese)
[24] Wu K, Schutter G D, Shi H, et al. Influence of the interfacial transition zone on the chloride migration coefficient of portland cement concrete [C]// First International Conference on Concrete Sustainability. Tokyo, Japan, 2013:612-617.
[25] Leng F G, Feng N Q, Lu X Y. An experimental study on the properties of resistance to diffusion of chloride ions of fly ash and blast furnace slag concrete[J]. Cement and Concrete Research, 2000, 30(6): 989-992. DOI:10.1016/s0008-8846(00)00250-7.
[26] Thomas M D A,Bamforth P B. Modelling chloride diffusion in concrete: Effect of fly ash and slag[J]. Cement and Concrete Research, 1999, 29(4): 487-495. DOI:10.1016/s0008-8846(98)00192-6.
[27] Wang Q, Yan P Y, Han S. The influence of steel slag on the hydration of cement during the hydration process of complex binder[J]. Science China Technological Sciences, 2011, 54(2): 388-394. DOI:10.1007/s11431-010-4204-0.
[28] Wu K. Experimental study on the influence of ITZ on the durability of concrete made with different kinds of blended materials [D]. Belgium: Faculty of Engineering and Architecture, Gent University, 2014.
[29] Sadrmomtazi A, Tahmouresi B, Kohani Khoshkbijari R. Effect of fly ash and silica fume on transition zone, pore structure and permeability of concrete[J]. Magazine of Concrete Research, 2018, 70(10): 519-532. DOI:10.1680/jmacr.16.00537.
[30] 王玉吉, 叶贡欣. 氧气转炉钢渣主要矿物相及其胶凝性能的研究[J]. 硅酸盐学报, 1981, 9(3): 302-308,377. DOI:10.14062/j.issn.0454-5648.1981.03.009.
Wang Yuji, Ye Gongxin.A study of the mineral phases of oxygen converter slag and their cementious properties[J]. Journal of the Chinese Ceramic Society, 1981, 9(3): 302-308,377. DOI:10.14062/j.issn.0454-5648.1981.03.009. (in Chinese)
[31] Brand A S,Roesler J R. Steel furnace slag aggregate expansion and hardened concrete properties[J]. Cement and Concrete Composites, 2015, 60: 1-9. DOI:10.1016/j.cemconcomp.2015.04.006.

相似文献/References:

[1]刘清泉,邓学钧.细集料抗磨光性能试验研究[J].东南大学学报(自然科学版),1998,28(5):98.[doi:10.3969/j.issn.1001-0505.1998.05.019]
 Liu Qingquan Deng Xuejun,Experimental Research on Anti polishing Property of Fine Aggregates[J].Journal of Southeast University (Natural Science Edition),1998,28(6):98.[doi:10.3969/j.issn.1001-0505.1998.05.019]
[2]占华刚,潘钢华,王宇东.加速碳化条件下混凝土界面过渡区微结构[J].东南大学学报(自然科学版),2015,45(3):569.[doi:10.3969/j.issn.1001-0505.2015.03.027]
 Zhan Huagang,Pan Ganghua,Wang Yudong.Microstructure of interface transition zone in concrete under accelerated carbonation[J].Journal of Southeast University (Natural Science Edition),2015,45(6):569.[doi:10.3969/j.issn.1001-0505.2015.03.027]
[3]常洪雷,穆松,刘建忠.防腐剂和养护制度对混凝土孔结构特征及水分损失的影响[J].东南大学学报(自然科学版),2015,45(6):1155.[doi:10.3969/j.issn.1001-0505.2015.06.024]
 Chang Honglei,Mu Song,Liu Jianzhong.Influence of anticorrosion agent and curing regimes on pore structure feature and moisture loss of concrete[J].Journal of Southeast University (Natural Science Edition),2015,45(6):1155.[doi:10.3969/j.issn.1001-0505.2015.06.024]
[4]沈奇真,潘钢华,占华刚,等.加速碳化条件下界面过渡区的纳米力学性能[J].东南大学学报(自然科学版),2016,46(1):146.[doi:10.3969/j.issn.1001-0505.2016.01.024]
 Shen Qizhen,Pan Ganghua,Zhan Huagang,et al.Nanomechanical properties of interfacial transition zone under accelerated carbonation[J].Journal of Southeast University (Natural Science Edition),2016,46(6):146.[doi:10.3969/j.issn.1001-0505.2016.01.024]

备注/Memo

备注/Memo:
收稿日期: 2018-03-27.
作者简介: 施惠生(1953—),男,博士,教授,博士生导师,shs@tongji.edu.cn.
基金项目: 国家自然科学基金资助项目(51608382)、“十三五”国家重点研发计划资助项目(2016YFC0700802).
引用本文: 施惠生,张林涛,吴凯,等.不同集料界面过渡区对氯离子传输特性的影响[J].东南大学学报(自然科学版),2018,48(6):1170-1176. DOI:10.3969/j.issn.1001-0505.2018.06.027.
更新日期/Last Update: 2018-11-20