[1]张骞,叶震,蔡建国,等.特高压长悬臂输电塔与输电塔-线耦合体系的风振特性[J].东南大学学报(自然科学版),2019,49(1):1-8.[doi:10.3969/j.issn.1001-0505.2019.01.001]
 Zhang Qian,Ye Zhen,Cai Jianguo,et al.Wind-induced response of UHV long cantilever transmission tower and tower-line coupled system[J].Journal of Southeast University (Natural Science Edition),2019,49(1):1-8.[doi:10.3969/j.issn.1001-0505.2019.01.001]
点击复制

特高压长悬臂输电塔与输电塔-线耦合体系的风振特性()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
49
期数:
2019年第1期
页码:
1-8
栏目:
土木工程
出版日期:
2019-01-20

文章信息/Info

Title:
Wind-induced response of UHV long cantilever transmission tower and tower-line coupled system
作者:
张骞1叶震1蔡建国1余亮2冯健1
1东南大学混凝土及预应力混凝土结构教育部重点实验室, 南京 210096; 2江苏省电力设计院, 南京 211102
Author(s):
Zhang Qian1 Ye Zhen1 Cai Jianguo1 Yu Liang2 Feng Jian1
1 Key Laboratory of Concrete and Prestressed Concrete Structures of Ministry of Education, Southeast University, Nanjing 210096, China
2 Jiangsu Power Design Institute, Nanjing 211102, China
关键词:
特高压长悬臂输电塔 风振响应 塔线体系 横担宽度 位移响应均方根值
Keywords:
UHV(ultra high voltage)long cantilever transmission tower wind-induced response tower-line coupled system length of cross arm RMS(root mean square)of displacement response
分类号:
TU352
DOI:
10.3969/j.issn.1001-0505.2019.01.001
摘要:
对±1 100 kV特高压长悬臂输电塔进行了有限元动力时程分析,采用单塔模型和塔线体系研究了不同风向作用下塔身和横担的风振响应特性,分析了横担总宽度对输电塔风振响应的影响.结果表明:长悬臂输电塔的一阶振型为扭转振型;随着分析的横担部位不断远离塔身中心,位移响应均方根在X方向略有削弱而在Y方向逐渐增大;0°风向下塔线体系模型和单塔模型的风振响应较为接近,而在45°风向和90°风向下塔线体系模型的风振响应较大;横担总宽度增大时塔身部位风振响应也相应增大,横担部位风振响应在Y方向增大而在X方向略有减小,且影响效果在不同风向时呈现出一定的规律性.分析结果为长悬臂输电塔的抗风设计提供参考.
Abstract:
The dynamic time history analysis of long cantilever transmission tower structure with ±1 100 UHV(ultra high voltage)was carried out. The single tower models and tower-line coupled systems were used to analyze the wind-induced responses of the tower body and the cross arm under different wind directions. The influence of the cross arm length on the wind-induced responses of transmission towers was analyzed. The results show that the first order vibration mode of the long cantilever transmission tower is a torsional vibration mode. When the region of the cross arm is gradually far away from the tower center, the RMS(root mean square)of the displacement response of the cross arm is slightly weakened in the X direction while increases in the Y direction. The wind-induced response of the tower-line coupled system is similar with that of the single tower model at the wind direction of 0°, but those of the single tower model at the wind directions of 45° and 90° are larger. With the increase of the total length of the cross arm, the wind-induced response of the tower body increases, and the wind-induced vibration response in the Y direction of the cross arm increases while decreases slightly in the X direction. The influence effects in different wind directions exhibit regularity. The research provides a reference for wind resistance design of long cantilever transmission towers.

参考文献/References:

[1] 张卓群,李宏男,李士锋,等.输电塔-线体系灾变分析与安全评估综述[J].土木工程学报,2016,49(12):75-88. DOI:10.15951/j.tmgcxb.2016.12.009.
Zhang Z Q, Li H N, Li S F, et al. Disaster analysis and safety assessment on transmission tower-line system: An overview[J]. China Civil Engineering Journal, 2016,49(12):75-88. DOI:10.15951/j.tmgcxb.2016.12.009. (in Chinese)
[2] Loredo-Souza A M, Davenport A G. The influence of the design methodology in the response of transmission towers to wind loading[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2003, 91(8): 995-1005. DOI:10.1016/S0167-6105(03)00048-5.
[3] Ozono S, Maeda J. In-plane dynamic interaction between a tower and conductors at lower frequencies[J]. Engineering Structures, 1992, 14(4): 210-216. DOI:10.1016/0141-0296(92)90009-f.
[4] Ozono S, Maeda J, Makino M. Characteristics of in-plane free vibration of transmission line systems[J]. Engineering Structures, 1988, 10(4): 272-280. DOI:10.1016/0141-0296(88)90049-1.
[5] Yasui H, Marukawa H, Momomura Y, et al. Analytical study on wind-induced vibration of power transmission towers[J]. Journal of Wind Engineering and Industrial Aerodynamics, 1999, 83(1/2/3): 431-441. DOI:10.1016/S0167-6105(99)00091-4.
[6] Momomura Y, Marukawa H, Okamura T, et al. Full-scale measurements of wind-induced vibration of a transmission line system in a mountainous area[J]. Journal of Wind Engineering and Industrial Aerodynamics, 1997, 72: 241-252. DOI:10.1016/S0167-6105(97)00240-7.
[7] Okamura T,Ohkuma T, Hongo E, et al. Wind response analysis of a transmission tower in a mountainous area[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2003, 91(1/2): 53-63. DOI:10.1016/S0167-6105(02)00322-7.
[8] 邓洪洲, 朱松晔, 陈晓明,等. 大跨越输电塔线体系气弹模型风洞试验[J]. 同济大学学报(自然科学版), 2003, 31(2):132-137. DOI:10.3321/j.issn:0253-374X.2003.02.002.
Deng H Z, Zhu S Y, Chen X M, et al. Wind tunnel investigation on model of long span transmission line system[J]. Journal of Tongji University(Natural Science), 2003,31(2):132-137. DOI:10.3321/j.issn:0253-374X.2003.02.002. (in Chinese)
[9] 郭勇, 孙炳楠, 叶尹. 大跨越输电塔线体系风振响应的时域分析[J]. 土木工程学报, 2006, 39(12):12-17. DOI:10.3321/j.issn:1000-131X.2006.12.003.
Guo Y, Sun B N, Ye Y. Time-domain analysis on wind-induced dynamic response of long span power transmission line systems[J]. China Civil Engineering Journal, 2006,39(12):12-17. DOI:10.3321/j.issn:1000-131X.2006.12.003. (in Chinese)
[10] 肖正直, 李正良, 汪之松,等. 基于HFFB试验的特高压输电塔风振响应分析[J]. 工程力学, 2010, 27(4):218-225.
  Xiao Z Z, Li Z L, Wang Z S,et al. Wind-induced vibration analysis of UHV transmission tower based on the HFFB tests[J]. Engineering Mechanics, 2010,27(4):218-225.(in Chinese)
[11] 赵桂峰, 谢强, 梁枢果,等. 输电塔架与输电塔-线耦联体系风振响应风洞试验研究[J]. 建筑结构学报, 2010, 31(2):69-77. DOI:10.14006/j.jzjgxb.2010.02.017.
Zhao G F, Xie Q, Liang S G, et al. Wind tunnel test on wind-induced response of transmission tower and tower line coupling system[J]. Journal of Building Structure, 2010, 31(2):69-77. DOI:10.14006/j.jzjgxb.2010.02.017. (in Chinese)
[12] 楼文娟, 蒋莹, 金晓华,等. 台风风场下角钢塔风振特性风洞试验研究[J]. 振动工程学报, 2013, 26(2):207-213. DOI:10.3969/j.issn.1004-4523.2013.02.008.
Lou W J, Jiang Y, Jin X H, et al. Wind tunnel test research on wind-induced vibration characteristics of angle steel tower in typhoon field[J]. Journal of Vibration Engineering, 2013, 26(2):207-213. DOI:10.3969/j.issn.1004-4523.2013.02.008. (in Chinese)
[13] 聂建波,潘峰,沈建国,等.±800 kV特高压T型长横担输电塔风振特性研究[J].特种结构,2013,30(1):48-52,39.
  Nie J B, Pan F, Shen J G, et al. Wind-induced dynamic response and vibration characteristics of T-long cross arm transmission tower for ±800 kV UHV lines[J]. Special Structures, 2013,30(1):48-52,39.(in Chinese)
[14] 中华人民共和国国家经济贸易委员会. DL/T 5154—2002架空送电线路杆塔结构设计技术规定[S].北京:中国电力出版社,2002.
[15] 中华人民共和国住房和城乡建设部. GB 5009—2012 建筑结构荷载规范[S].北京: 中国建筑工业出版社,2012.
[16] Iannuzzi A, Spinelli P. Artificial wind generation and structural response[J]. Journal of Structural Engineering, 1987, 113(12): 2382-2398. DOI:10.1061/(asce)0733-9445(1987)113:12(2382).
[17] Davenport A G. The spectrum of horizontal gustiness near the ground in high winds[J].Quarterly Journal of the Royal Meteorological Society, 1962, 88(376): 197-198. DOI:10.1002/qj.49708837618.

相似文献/References:

[1]黄瑞新,李爱群,张志强,等.北京奥林匹克中心演播塔TMD风振控制[J].东南大学学报(自然科学版),2009,39(3):519.[doi:10.3969/j.issn.1001-0505.2009.03.019]
 Huang Ruixin,Li Aiqun,Zhang Zhiqiang,et al.TMD vibration control of Beijing Olympic Center Broadcast Tower under fluctuating wind load[J].Journal of Southeast University (Natural Science Edition),2009,39(1):519.[doi:10.3969/j.issn.1001-0505.2009.03.019]
[2]张志强,李爱群,贾洪,等.粘滞流体阻尼器对电视塔的风振响应控制[J].东南大学学报(自然科学版),2007,37(6):1018.[doi:10.3969/j.issn.1001-0505.2007.06.015]
 Zhang Zhiqiang,Li Aiqun,Jia Hong,et al.Wind-induced vibration control of TV tower with fluid viscous damper[J].Journal of Southeast University (Natural Science Edition),2007,37(1):1018.[doi:10.3969/j.issn.1001-0505.2007.06.015]
[3]余传运,张建润.输电塔线体系动力特性及风振响应分析[J].东南大学学报(自然科学版),2019,49(1):116.[doi:10.3969/j.issn.1001-0505.2019.01.017]
 Yu Chuanyun,Zhang Jianrun.Analysis on dynamic characteristics and wind-induced vibration response of transmission line systems[J].Journal of Southeast University (Natural Science Edition),2019,49(1):116.[doi:10.3969/j.issn.1001-0505.2019.01.017]

备注/Memo

备注/Memo:
收稿日期: 2018-06-05.
作者简介: 张骞(1994—),男,博士生;蔡建国(联系人),男,博士,教授,博士生导师,j.cai@seu.edu.cn.
基金项目: 国家重点研发计划资助项目(2016YFC0701401).
引用本文: 张骞,叶震,蔡建国,等.特高压长悬臂输电塔与输电塔-线耦合体系的风振特性[J].东南大学学报(自然科学版),2019,49(1):1-8. DOI:10.3969/j.issn.1001-0505.2019.01.001.
更新日期/Last Update: 2019-01-20