[1]邓扬,李爱群.基于断裂力学和长期监测数据的钢箱梁桥顶板U肋焊缝疲劳可靠度分析[J].东南大学学报(自然科学版),2019,49(1):68-75.[doi:10.3969/j.issn.1001-0505.2019.01.010]
 Deng Yang,Li Aiqun.Fatigue reliability analysis for welds of U ribs in steel box girders based on fracture mechanics and long-term monitoring data[J].Journal of Southeast University (Natural Science Edition),2019,49(1):68-75.[doi:10.3969/j.issn.1001-0505.2019.01.010]
点击复制

基于断裂力学和长期监测数据的钢箱梁桥顶板U肋焊缝疲劳可靠度分析()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
49
期数:
2019年第1期
页码:
68-75
栏目:
交通运输工程
出版日期:
2019-01-20

文章信息/Info

Title:
Fatigue reliability analysis for welds of U ribs in steel box girders based on fracture mechanics and long-term monitoring data
作者:
邓扬1李爱群12
1北京建筑大学北京未来城市设计高精尖创新中心, 北京 100044; 2东南大学土木工程学院, 南京 210096
Author(s):
Deng Yang1 Li Aiqun12
1Beijing Advanced Innovation Center for Future Urban Design, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
2School of Civil Engineering, Southeast University, Nanjing 210096, China
关键词:
钢箱梁 U形肋 对接焊缝 断裂力学 结构健康监测 疲劳可靠度
Keywords:
steel box girder U rib butt weld fracture mechanics structural health monitoring(SHM) fatigue reliability
分类号:
U441
DOI:
10.3969/j.issn.1001-0505.2019.01.010
摘要:
针对钢箱梁桥顶板U肋嵌补段对接焊缝的构造特点与受力状态,以润扬大桥钢箱梁为研究对象,基于线弹性断裂力学和长期监测数据,提出了该焊缝的疲劳可靠度分析方法.基于有限厚板半椭圆表面裂纹模型推导了焊缝的临界损伤累积函数,采用随机模拟的方法建立了临界损伤累积函数的概率模型.针对焊缝疲劳荷载效应的多峰分布特征,采用高斯混合分布建立了等效应力范围的概率模型.研究表明,顶板U肋嵌补段对接焊缝的临界损伤累积函数服从对数正态分布;焊缝等效应力范围的概率模型可表述为多个高斯分量的加权平均;润扬斜拉桥焊缝的疲劳可靠度显著大于相同位置的润扬悬索桥焊缝,反映了两桥钢箱梁局部构造的差异.该方法可为同类型桥梁的疲劳可靠度分析提供参考.
Abstract:
Aiming at the structural features and stress state of butt-welds in the embedded sections of U ribs in steel box girders, the Runyang Bridge was taken as an object to present fatigue reliability analysis method based on linear elastic fracture mechanics and long-term monitoring data. The critical damage cumulative functions were derived using the semi-elliptical surface crack model of finite thick plate. Then, a random simulation was adopted to obtain the probabilistic distributions of the critical damage cumulative functions. The Gaussian mixture distributions, which can address the multi-peak distribution of monitored data of fatigue loading effects, were used to establish the distribution models of equivalent stress ranges. It is found that the critical damage cumulative functions of the butt welds in the embedded sections of the U ribs follow a lognormal distribution. The probabilistic models of equivalent stress range can be described as the weighted average of several Gaussian components. At the same location, the weld reliability of the Runyang Cable-stayed Bridge is remarkably higher than that of the Runyang Suspension Bridge. This is due to the difference in local structure between the two bridges. The presented method can provide a reference for the fatigue reliability analysis of the same type bridges.

参考文献/References:

[1] Fisher J W. Fatigue and fracture in steel bridges: Case studies [M]. New York: John Willey & Sons, 1984:1-10.
[2] 张清华, 卜一之, 李乔. 正交异性钢桥面板疲劳问题的研究进展[J]. 中国公路学报, 2017, 30(3): 14-30,39. DOI:10.3969/j.issn.1006-3897.2017.03.002.
Zhang Qinghua, Bu Yizhi, Li Qiao. Review on fatigue problems of orthotropic steel bridge deck[J].China Journal of Highway and Transport, 2017, 30(3): 14-30,39. DOI:10.3969/j.issn.1006-3897.2017.03.002. (in Chinese)
[3] Zhao Z W, Haldar A, Breen F L. Fatigue-reliability evaluation of steel bridges[J]. Journal of Structural Engineering, 1994, 120(5): 1608-1623. DOI:10.1061/(asce)0733-9445(1994)120:5(1608).
[4] Cheung M S, Li W C. Probabilistic fatigue and fracture analyses of steel bridges[J].Structural Safety, 2003, 25(3): 245-262. DOI:10.1016/s0167-4730(02)00067-x.
[5] 王春生, 陈艾荣, 陈惟珍. 基于断裂力学的老龄钢桥剩余寿命与使用安全评估[J]. 中国公路学报, 2006, 19(2): 42-48. DOI:10.3321/j.issn:1001-7372.2006.02.008.
Wang Chunsheng, Chen Airong, Chen Weizhen. Assessment of remaining fatigue life and service safety for old steel bridges based on fracture mechanics[J].China Journal of Highway and Transport, 2006, 19(2): 42-48. DOI:10.3321/j.issn:1001-7372.2006.02.008. (in Chinese)
[6] 李莹, 黄侨. 基于断裂力学理论的钢桥疲劳可靠性评估[J]. 科学技术与工程, 2008, 8(16): 4450-4457. DOI:10.3969/j.issn.1671-1815.2008.16.007.
Li Ying, Huang Qiao. Fracture mechanics approach based fatigue reliability assessment on steel bridges[J].Science Technology and Engineering, 2008, 8(16): 4450-4457. DOI:10.3969/j.issn.1671-1815.2008.16.007. (in Chinese)
[7] 王应良. 基于抵抗疲劳和断裂的桥梁允许最大钢板厚度的确定[J]. 土木工程学报, 2012, 45(10): 145-151. DOI:10.15951/j.tmgcxb.2012.10.004.
Wang Yingliang. Permissible maximum plate thickness assessment of steel bridges based on resistance fatigue and fracture[J].China Civil Engineering Journal, 2012, 45(10): 145-151. DOI:10.15951/j.tmgcxb.2012.10.004. (in Chinese)
[8] Caglayan O, Ozakgul K. Crack assessment of the new galata bascule-type steel bridge[J]. Journal of Performance of Constructed Facilities, 2015, 29(3): 04014070.(in Chinese)
[9] 王春生, 翟慕赛, 唐友明, 等. 钢桥面板疲劳裂纹耦合扩展机理的数值断裂力学模拟[J]. 中国公路学报, 2017, 30(3): 82-95. DOI:10.3969/j.issn.1006-3897.2017.03.009.
Wang Chunsheng, Zhai Musai, Tang Youming, et al. Numerical fracture mechanical simulation of fatigue crack coupled propagation mechanism for steel bridge deck[J].China Journal of Highway and Transport, 2017, 30(3): 82-95. DOI:10.3969/j.issn.1006-3897.2017.03.009. (in Chinese)
[10] Kwon K, Frangopol D M. Bridge fatigue assessment and management using reliability-based crack growth and probability of detection models[J].Probabilistic Engineering Mechanics, 2011, 26(3): 471-480. DOI:10.1016/j.probengmech.2011.02.001.
[11] Guo T, Chen Y W. Fatigue reliability analysis of steel bridge details based on field-monitored data and linear elastic fracture mechanics[J].Structure and Infrastructure Engineering, 2013, 9(5): 496-505. DOI:10.1080/15732479.2011.568508.
[12] 邓扬, 丁幼亮, 李爱群, 等. 钢箱梁桥焊接细节的疲劳断裂可靠性分析[J]. 工程力学, 2012, 29(10): 122-128.
  Deng Yang, Ding Youliang, Li Aiqun, et al. Fracture fatigue reliability of welded details in bridge steel box girders[J].Engineering Mechanics, 2012, 29(10): 122-128.(in Chinese)
[13] 马如进, 徐世桥, 王达磊, 等. 基于大数据的大跨悬索桥钢箱梁疲劳寿命分析[J]. 华南理工大学学报(自然科学版), 2017, 45(6): 66-73. DOI:10.3969/j.issn.1000-565X.2017.06.011.
Ma Rujin, Xu Shiqiao, Wang Dalei, et al. Big data-based fatigue life analysis of steel box girder in large-span suspension bridge[J].Journal of South China University of Technology(Natural Science Edition), 2017, 45(6): 66-73. DOI:10.3969/j.issn.1000-565X.2017.06.011. (in Chinese)
[14] Deng Y, Li A Q, Feng D M. Fatigue reliability assessment for orthotropic steel decks based on Long-term strain monitoring[J].Sensors, 2018, 18(2): 181. DOI:10.3390/s18010181.
[15] 王莹, 李兆霞, 缪海萍. 考虑环境变温作用的大跨桥梁疲劳损伤分析[J]. 湖南大学学报(自然科学版), 2018, 45(1): 26-36. DOI:10.16339/j.cnki.hdxbzkb.2018.01.004.
Wang Ying, Li Zhaoxia, Miao Haiping. Analysis on fatigue damage of long-span bridges considering effect of environment varying-temperature[J]. Journal of Hunan University(Natural Sciences), 2018, 45(1): 26-36. DOI:10.16339/j.cnki.hdxbzkb.2018.01.004. (in Chinese)
[16] Paris P, Erdogan F. Closure to discussions of a critical analysis of crack propagation laws[J]. Journal of Basic Engineering, 1963, 85(4):533-534. DOI:10.1115/1.3656903.
[17] Miner M A. Cumulative damage in fatigue [J].Journal of Applied Mechanics, 1945,12(3):159-164.
[18] Deng Y, Liu Y, Feng D M, et al. Investigation of fatigue performance of welded details in long-span steel bridges using long-term monitoring strain data[J]. Structural Control and Health Monitoring, 2015, 22(11): 1343-1358. DOI:10.1002/stc.1747.
[19] Frangopol D M, Strauss A, Kim S. Bridge reliability assessment based on monitoring[J].Journal of Bridge Engineering, 2008, 13(3): 258-270. DOI:10.1061/(asce)1084-0702(2008)13:3(258).
[20] Righiniotis T D, Chryssanthopoulos M K. Probabilistic fatigue analysis under constant amplitude loading[J].Journal of Constructional Steel Research, 2003, 59(7): 867-886. DOI:10.1016/s0143-974x(03)00002-6.
[21] Xiao Z G, Yamada K, Inoue J, et al. Fatigue cracks in longitudinal ribs of steel orthotropic deck[J].International Journal of Fatigue, 2006, 28(4): 409-416. DOI:10.1016/j.ijfatigue.2005.07.017.
[22] Japan Society of Steel Construction. Fatigue design recommendations for steel structures and commentary[S]. Tokyo, Japan: Japan Society of Steel Construction, 1993.
[23] Zhang R X, Mahadevan S. Fatigue reliability analysis using nondestructive inspection[J].Journal of Structural Engineering, 2001, 127(8): 957-965. DOI:10.1061/(asce)0733-9445(2001)127:8(957).
[24] 邓扬, 刘扬, 李爱群. 局部构造对钢箱梁关键焊缝疲劳性能的影响分析[J]. 桥梁建设, 2014, 44(2): 43-49.
  Deng Yang, Liu Yang, Li Aiqun. Analysis of effect of local structure on fatigue performance of critical welding seams of steel box girder[J].Bridge Construction, 2014, 44(2): 43-49.(in Chinese)
[25] Sih G C. Handbook of stress-intensity factors for researchers and engineers [M]. Bethlehem: Lehigh University, Institute of Fracture and SolidMechanics, 1973
[26] Fett T. Estimation of stress intensity factors for semi-elliptical surface cracks[J].Engineering Fracture Mechanics, 2000, 66(4): 349-356. DOI:10.1016/S0013-7944(00)00027-8.
[27] 邓扬, 李爱群, 刘扬, 等. 钢桥疲劳荷载效应监测数据概率建模与疲劳可靠性分析方法[J]. 土木工程学报, 2014, 47(7): 79-87. DOI:10.15951/j.tmgcxb.2014.07.036.
Deng Yang, Li Aiqun, Liu Yang, et al. Probabilistic modeling of fatigue loading effects and fatigue reliability evaluation for steel bridges based on monitored data[J].China Civil Engineering Journal, 2014, 47(7): 79-87. DOI:10.15951/j.tmgcxb.2014.07.036. (in Chinese)
[28] Ni Y Q, Ye X W, Ko J M. Modeling of stress spectrum using long-term monitoring data and finite mixture distributions[J]. Journal of Engineering Mechanics, 2012, 138(2): 175-183. DOI:10.1061/(asce)em.1943-7889.0000313.
[29] Dempster A P, Laird N M, Rubin D B. Maximumlikelihood from incomplete data via the EM algorithm [J]. Journal of the Royal Statistical Society, 1977, 39(1): 1-38
[30] Schwarz G. Estimating the dimension of a model [J]. The Annals of Statistics, 1978, 6(2): 461-464. DOI:10.1214/aos/1176344136.

相似文献/References:

[1]宋永生,丁幼亮,王高新,等.正交异性钢桥面板疲劳性能的局部构造效应[J].东南大学学报(自然科学版),2013,43(2):403.[doi:10.3969/j.issn.1001-0505.2013.02.033]
 Song Yongsheng,Ding Youliang,Wang Gaoxin,et al.Local structural effects for fatigue performance of steel orthotropic deck[J].Journal of Southeast University (Natural Science Edition),2013,43(1):403.[doi:10.3969/j.issn.1001-0505.2013.02.033]
[2]胡光伟,钱振东,黄卫.正交异性钢箱梁桥面第二体系结构优化设计[J].东南大学学报(自然科学版),2001,31(3):76.[doi:10.3969/j.issn.1001-0505.2001.03.019]
 Hu Guangwei,Qian Zhendong,Huang Wei.Structural Optimum Design of the Second System of Orthotropic Steel Bridge[J].Journal of Southeast University (Natural Science Edition),2001,31(1):76.[doi:10.3969/j.issn.1001-0505.2001.03.019]

备注/Memo

备注/Memo:
收稿日期: 2018-05-14..
作者简介: 邓扬(1984—),男,博士,副教授,seudengyang@foxmail.com.
基金项目: 国家自然科学基金资助项目(51878027, 51438002).
引用本文: 邓扬,李爱群.基于断裂力学和长期监测数据的钢箱梁桥顶板U肋焊缝疲劳可靠度分析[J].东南大学学报(自然科学版),2019,49(1):68-75. DOI:10.3969/j.issn.1001-0505.2019.01.010.
更新日期/Last Update: 2019-01-20