[1]柴丽娟,郭丽萍,陈波,等.冻融和碳化交替作用下生态高延性水泥基复合材料的剪切性能[J].东南大学学报(自然科学版),2019,49(1):76-81.[doi:10.3969/j.issn.1001-0505.2019.01.011]
 Chai Lijuan,Guo Liping,Chen Bo,et al.Shear performance of ecological high ductility cementitious composites under cyclic effects on freeze-thaw and carbonation[J].Journal of Southeast University (Natural Science Edition),2019,49(1):76-81.[doi:10.3969/j.issn.1001-0505.2019.01.011]
点击复制

冻融和碳化交替作用下生态高延性水泥基复合材料的剪切性能()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
49
期数:
2019年第1期
页码:
76-81
栏目:
材料科学与工程
出版日期:
2019-01-20

文章信息/Info

Title:
Shear performance of ecological high ductility cementitious composites under cyclic effects on freeze-thaw and carbonation
作者:
柴丽娟1郭丽萍1陈波2罗德谟3黄国钢3邓忠华4
1东南大学材料科学与工程学院, 南京211189; 2南京水利科学研究院水文水资源与水利工程科学国家重点实验室, 南京210029; 3永安市交通运输局, 永安 366000; 4永安市宝华林实业发展有限公司, 永安 366000
Author(s):
Chai Lijuan1 Guo Liping1 Chen Bo2 Luo Demo3 Huang Guogang3 Deng Zhonghua4
1School of Materials Science and Engineering, Southeast University, Nanjing 211189, China
2State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Nanjing Hydraulic Research Institute, Nanjing 210029, China
3Yongan Transportation Bureau, Yongan 366000, China
4 Baohualin Industrial Development Co., Ltd., Yongan 366000, China
关键词:
交替作用 碳化前沿 剪切应力-应变 应变能 弹性模量
Keywords:
cyclic effect carbonation front shear stress-strain strain energy elastic modulus
分类号:
TU528
DOI:
10.3969/j.issn.1001-0505.2019.01.011
摘要:
针对车辆减速在生态高延性水泥基复合材料桥面无缝连接板内引起的剪应力问题,设计了冻融-碳化交替作用下生态高延性水泥基复合材料的剪切性能试验.首先研究生态高延性水泥基复合材料试块的碳化前沿,然后研究试块的剪切性能.结果表明:随着交替次数的增加,试块的碳化前沿逐渐增加;随着交替次数的增加,试块应力-应变上升段曲线逐渐平缓,弹性模量损伤因子逐渐增加,而剪切应变能损伤因子在交替次数1~3次后增加,在5~15次后降低.因此,在桥面连接板设计中可采用经历15次交替作用后试块的剪切应力-应变曲线.
Abstract:
Aimed at shear problem caused by vehicles deceleration in bridge jointless link slab produced by ecological high ductility cementitious composites(Eco-HDCC), the shear property of Eco-HDCC under cyclic effects on the freeze-thaw and carbonation was studied. The carbonation front of Eco-HDCC was determined. Then, the shear performance of Eco-HDCC was investigated. The results show that with the increase of the cycle, the carbonation front of Eco-HDCC increases with a slow speed. In addition, with the increase of the cycle, the ascending shape of the shear stress-strain curve for Eco-HDCC is gentler and the shear elastic modulus damage factor shows an increased trend. The shear strain energy damage factor increases after 1 to 3 cycles, and decreases after 5 to 15 cycles. Therefore, the shear stress-strain curve of Eco-HDCC after 15 cycle is adopted in bridge link slab design.

参考文献/References:

[1] Lepech M D, Li V C. Application of ECC for bridge deck link slabs[J]. Materials and Structures, 2009, 42(9): 1185-1195. DOI:10.1617/s11527-009-9544-5.
[2] 郭丽萍, 朱春东, 范永根, 等. 桥面连接板修补用高延性水泥基复合材料的设计与应用[J]. 混凝土与水泥制品, 2016(12): 36-39. DOI:10.3969/j.issn.1000-4637.2016.12.008.
Guo L P, Zhu C D, Fan Y G, et al. Design and application of high ductility cementitious composite(HDCC)for bridge deck link slab repairing [J]. China Concrete and Cement Products, 2016(12): 36-39. DOI:10.3969/j.issn.1000-4637.2016.12.008. (in Chinese)
[3] Kang S B, Tan K H, Zhou X H, et al. Experimental investigation on shear strength of engineered cementitious composites[J]. Engineering Structures, 2017, 143: 141-151. DOI:10.1016/j.engstruct.2017.04.019.
[4] van Zijl G P A G. Improved mechanical performance: Shear behaviour of strain-hardening cement-based composites(SHCC)[J]. Cement and Concrete Research, 2007, 37(8): 1241-1247. DOI:10.1016/j.cemconres.2007.04.009.
[5] 张丽辉. 生态型高延性水泥基复合材料制备、关键性能及机理研究 [D]. 南京:东南大学, 2014.
[6] 中交公路规划设计院有限公司. JTG D60—2015公路桥涵设计通用规范 [S]. 北京:人民交通出版社, 2015.
[7] Chai L J, Guo L P, Chen B, et al. Interactive effects of freeze-thaw cycle and carbonation on tensile property of ecological high ductility cementitious composites for bridge deck link slab[J]. Construction and Building Materials, 2018, 186: 773-781. DOI:10.1016/j.conbuildmat.2018.07.248.
[8] 武海荣. 混凝土结构耐久性环境区划与耐久性设计方法[D]. 杭州: 浙江大学, 2012.
  Wu H R. Environmental zonation on design methodology for durability of concrete structures[D]. Hangzhou: Zhejiang University, 2012.(in Chinese)
[9] 李浩宇. 实验室与自然条件下水工结构混凝土冻融关系研究 [D]. 长春: 长春工程学院, 2015.
  Li H Y. Study on the relationship between the lab and natural conditions of hydraulic structure concrete freezing and thawing[D]. Changchun: Changchun Institute of Technology, 2015.(in Chinese)
[10] 中华人民共和国住房和城乡建设部. GB/T 50082—2009普通混凝土长期性能和耐久性能试验方法标准 [S]. 北京: 中国建筑工业出版社, 2009.
[11] 中华人民共和国住房和城乡建设部. GB/T 50081—2002普通混凝土力学性能试验方法标准 [S]. 北京: 中国建筑工业出版社, 2002.
[12] 中国中材国际工程股份有限公司. JC/T 2461—2018 高延性纤维增强水泥基复合材料力学性能试验方法 [S]. 北京: 中国建材工业出版社, 2018.
[13] 马瑞, 郭丽萍, 谌正凯, 等. 超高性能钢纤维水泥基复合材料-高延性水泥基材料复合梁的制备及弯曲性能[J]. 东南大学学报(自然科学版), 2017, 47(2): 377-383. DOI:10.3969/j.issn.1001-0505.2017.02.029.
Ma R, Guo L P, Chen Z K, et al. Preparation and bending properties of coupled beam made by UHPFRCC and high ductility cementitious composites[J]. Journal of Southeast University(Natural Science Edition), 2017, 47(2): 377-383. DOI:10.3969/j.issn.1001-0505.2017.02.029. (in Chinese)
[14] 中华人民共和国住房和城乡建设部. GB 50010—2010 混凝土结构设计规范 [S]. 北京: 中国建筑工业出版社, 2010.

备注/Memo

备注/Memo:
收稿日期: 2018-08-09.
作者简介: 柴丽娟(1991—),女,博士生;郭丽萍(联系人),女,博士,副教授,博士生导师,guoliping691@163.com.
基金项目: 国家自然科学基金资助项目(51438003, 51739008, 51778133)、国家重点研发计划资助项目(2016YFC0401610)、国家重点基础研究发展计划(973计划)资助项目(2015CB655102)、福建省交通运输科技资助项目(2017Y057)、江苏省“六大”人才高峰计划资助项目(JZ-004)、江苏省第五期333高层次人才工程资助项目.
引用本文: 柴丽娟,郭丽萍,陈波,等.冻融和碳化交替作用下生态高延性水泥基复合材料的剪切性能[J].东南大学学报(自然科学版),2019,49(1):76-81. DOI:10.3969/j.issn.1001-0505.2019.01.011.
更新日期/Last Update: 2019-01-20