# [1]唐敬阁,李斌,常健,等.水下滑翔蛇形机器人滑翔运动建模与优化控制[J].东南大学学报(自然科学版),2019,49(1):94-100.[doi:10.3969/j.issn.1001-0505.2019.01.014] 　Tang Jingge,Li Bin,Chang Jian,et al.Modeling and optimal control on gliding motion of underwater gliding snake-like robot[J].Journal of Southeast University (Natural Science Edition),2019,49(1):94-100.[doi:10.3969/j.issn.1001-0505.2019.01.014] 点击复制 水下滑翔蛇形机器人滑翔运动建模与优化控制() 分享到： var jiathis_config = { data_track_clickback: true };

49

2019年第1期

94-100

2019-01-20

## 文章信息/Info

Title:
Modeling and optimal control on gliding motion of underwater gliding snake-like robot

1 中国科学院沈阳自动化研究所机器人学国家重点实验室, 沈阳 110016; 2 中国科学院机器人与智能制造创新研究院, 沈阳 110016; 3 中国科学院大学, 北京 100049
Author(s):
1 State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China
2 Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang 110016, China
3 University of Chinese Academy of Sciences, Beijing 100049, China

Keywords:

TP242.3
DOI:
10.3969/j.issn.1001-0505.2019.01.014

Abstract:
To achieve stable control of gliding trajectory for the underwater gliding snake-like robot, a mechanical structure was designed and analyzed for the problem of shape and size limitation of the robot. Based on the designed mechanical system, a mathematical model for the gliding motion was established by using momentum theorem and moment of momentum theorem. The nonlinear model was linearized and the state feedback controller was designed using linear quadratic regulator(LQR), an optimal control strategy. To enhance the robustness of the system to parameter disturbances, the integral control was added to form a linear quadratic integral(LQI)controller. The stability, the robustness and the tracking error of the two control strategies were analyzed by simulation. The results show that both control strategies can achieve asymptotic trajectory tracking and input disturbance rejection. LQI can also achieve disturbance rejection on hydrodynamic parameters. The steady state tracking error of LQI is 0.271 5 m, and it is 27.58% lower than that of LQR.

## 参考文献/References:

[1] Hirose S, Yamada H. Snake-like robots [J]. IEEE Robotics & Automation Magazine, 2009, 16(1): 88-98. DOI:10.1109/mra.2009.932130.
[2] Sverdrup-Thygeson J, Kelasidi E, Pettersen K Y, et al. The underwater swimming manipulator: A bioinspired solution for subsea operations[J]. IEEE Journal of Oceanic Engineering, 2018, 43(2): 402-417. DOI:10.1109/joe.2017.2768108.
[3] Pettersen K Y. Snake robots[J]. Annual Reviews in Control, 2017, 44: 19-44. DOI:10.1016/j.arcontrol.2017.09.006.
[4] Stommel H. The slocum mission[J]. Oceanography, 1989, 2(1): 22-25. DOI:10.5670/oceanog.1989.26.
[5] Yu J C, Zhang A Q, Jin W M, et al. Development and experiments of the sea-wing underwater glider[J].China Ocean Engineering, 2011, 25(4): 721-736. DOI:10.1007/s13344-011-0058-x.
[6] Rudnick D L, Davis R E, Sherman J T. Spray underwater glideroperations[J]. Journal of Atmospheric and Oceanic Technology, 2016, 33(6): 1113-1122. DOI:10.1175/jtech-d-15-0252.1.
[7] Zhang F T, Tan X B. Gliding robotic fish and its tail-enabled yaw motion stabilization using sliding mode control[C]//ASME 2013 Dynamic Systems and Control Conference. Palo Alto, California, USA,2013: V002T32A006. DOI:10.1115/DSCC2013-4015.
[8] Zhang F T, Wang J X, Thon J, et al. Gliding robotic fish for mobile sampling of aquatic environments[C]//Proceedings of the 11th IEEE International Conference on Networking, Sensing and Control. Miami, FL, USA, 2014: 167-172. DOI:10.1109/ICNSC.2014.6819619.
[9] Zhang F T,Ennasr O, Tan X B. Gliding robotic fish: An underwater sensing platform and its spiral-based tracking in 3D space[J]. Marine Technology Society Journal, 2017, 51(5): 71-78. DOI:10.4031/mtsj.51.5.6.
[10] Wu Z X, Yu J Z, Yuan J, et al. Mechatronic design and implementation of a novel gliding robotic dolphin[C]// IEEE International Conference on Robotics and Biomimetics(ROBIO). Zhuhai, China, 2015: 267-272. DOI:10.1109/ROBIO.2015.7418778.
[11] Yuan J, Wu Z X, Yu J Z, et al. Sliding mode observer-based heading control for a gliding roboticdolphin[J]. IEEE Transactions on Industrial Electronics, 2017, 64(8): 6815-6824. DOI:10.1109/tie.2017.2674606.
[12] Yu S M, Ma S G, Li B, et al. An amphibious snake-like robot: Design and motion experiments on ground and in water[C]//International Conference on Information and Automation. Zhuhai, Macau, China, 2009: 500-505. DOI:10.1109/ICINFA.2009.5204975.
[13] 唐敬阁, 李斌, 李志强, 等. 水下蛇形机器人的滑翔运动性能研究[J]. 高技术通讯, 2017, 27(3): 269-276. DOI: 10.3772/j.issn.1002-0470.2017.03.010.
Tang J G, Li B, Li Z Q, et al. Research on the gliding performance of underwater snake-like robots [J]. Chinese High Technology Letters, 2017, 27(3): 269-276. DOI:10.3772/j.issn.1002-0470.2017.03.010. (in Chinese)
[14] Graver J G, Leonard N E. Underwater glider dynamics and control[C]//12th International Symposium on Unmanned Untethered Submersible Technology. Durham, England, 2001: 1742-1710.
[15] Stevens B L, Lewis F L. Aircraft control and simulation [M]. New York: Wiley, 1992: 51-109.