[1]唐敬阁,李斌,常健,等.水下滑翔蛇形机器人滑翔运动建模与优化控制[J].东南大学学报(自然科学版),2019,49(1):94-100.[doi:10.3969/j.issn.1001-0505.2019.01.014]
 Tang Jingge,Li Bin,Chang Jian,et al.Modeling and optimal control on gliding motion of underwater gliding snake-like robot[J].Journal of Southeast University (Natural Science Edition),2019,49(1):94-100.[doi:10.3969/j.issn.1001-0505.2019.01.014]
点击复制

水下滑翔蛇形机器人滑翔运动建模与优化控制()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
49
期数:
2019年第1期
页码:
94-100
栏目:
自动化
出版日期:
2019-01-20

文章信息/Info

Title:
Modeling and optimal control on gliding motion of underwater gliding snake-like robot
作者:
唐敬阁123李斌12常健12王聪12张国伟12
1 中国科学院沈阳自动化研究所机器人学国家重点实验室, 沈阳 110016; 2 中国科学院机器人与智能制造创新研究院, 沈阳 110016; 3 中国科学院大学, 北京 100049
Author(s):
Tang Jingge123 Li Bin12 Chang Jian12 Wang Cong12 Zhang Guowei12
1 State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China
2 Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang 110016, China
3 University of Chinese Academy of Sciences, Beijing 100049, China
关键词:
水下滑翔蛇形机器人 LQR控制器 LQI控制器 轨迹跟踪 滑翔运动
Keywords:
underwater gliding snake-like robot linear quadratic regulator(LQR)controller linear quadratic integral(LQI)controller trajectory following gliding motion
分类号:
TP242.3
DOI:
10.3969/j.issn.1001-0505.2019.01.014
摘要:
为了实现水下滑翔蛇形机器人滑翔轨迹的稳定控制,针对机器人的外形和尺寸受限问题,对机械结构进行了设计与分析.基于所设计的机械系统,采用动量定理和动量矩定理,建立滑翔运动的数学模型.对非线性模型进行线性化,并采用最优二次型控制策略(LQR)设计状态反馈控制器.为了增强系统对参数扰动的鲁棒性,加入积分控制,构成LQI控制器.通过仿真对2种控制策略的稳定性、鲁棒性和跟踪误差进行分析,结果表明,2种控制策略均能实现渐近轨迹跟踪和输入扰动抑制;LQI控制器还可以实现水动力参数扰动抑制;LQI控制器的稳态跟踪误差为0.271 5m,比LQR控制器跟踪误差降低了27.58%.
Abstract:
To achieve stable control of gliding trajectory for the underwater gliding snake-like robot, a mechanical structure was designed and analyzed for the problem of shape and size limitation of the robot. Based on the designed mechanical system, a mathematical model for the gliding motion was established by using momentum theorem and moment of momentum theorem. The nonlinear model was linearized and the state feedback controller was designed using linear quadratic regulator(LQR), an optimal control strategy. To enhance the robustness of the system to parameter disturbances, the integral control was added to form a linear quadratic integral(LQI)controller. The stability, the robustness and the tracking error of the two control strategies were analyzed by simulation. The results show that both control strategies can achieve asymptotic trajectory tracking and input disturbance rejection. LQI can also achieve disturbance rejection on hydrodynamic parameters. The steady state tracking error of LQI is 0.271 5 m, and it is 27.58% lower than that of LQR.

参考文献/References:

[1] Hirose S, Yamada H. Snake-like robots [J]. IEEE Robotics & Automation Magazine, 2009, 16(1): 88-98. DOI:10.1109/mra.2009.932130.
[2] Sverdrup-Thygeson J, Kelasidi E, Pettersen K Y, et al. The underwater swimming manipulator: A bioinspired solution for subsea operations[J]. IEEE Journal of Oceanic Engineering, 2018, 43(2): 402-417. DOI:10.1109/joe.2017.2768108.
[3] Pettersen K Y. Snake robots[J]. Annual Reviews in Control, 2017, 44: 19-44. DOI:10.1016/j.arcontrol.2017.09.006.
[4] Stommel H. The slocum mission[J]. Oceanography, 1989, 2(1): 22-25. DOI:10.5670/oceanog.1989.26.
[5] Yu J C, Zhang A Q, Jin W M, et al. Development and experiments of the sea-wing underwater glider[J].China Ocean Engineering, 2011, 25(4): 721-736. DOI:10.1007/s13344-011-0058-x.
[6] Rudnick D L, Davis R E, Sherman J T. Spray underwater glideroperations[J]. Journal of Atmospheric and Oceanic Technology, 2016, 33(6): 1113-1122. DOI:10.1175/jtech-d-15-0252.1.
[7] Zhang F T, Tan X B. Gliding robotic fish and its tail-enabled yaw motion stabilization using sliding mode control[C]//ASME 2013 Dynamic Systems and Control Conference. Palo Alto, California, USA,2013: V002T32A006. DOI:10.1115/DSCC2013-4015.
[8] Zhang F T, Wang J X, Thon J, et al. Gliding robotic fish for mobile sampling of aquatic environments[C]//Proceedings of the 11th IEEE International Conference on Networking, Sensing and Control. Miami, FL, USA, 2014: 167-172. DOI:10.1109/ICNSC.2014.6819619.
[9] Zhang F T,Ennasr O, Tan X B. Gliding robotic fish: An underwater sensing platform and its spiral-based tracking in 3D space[J]. Marine Technology Society Journal, 2017, 51(5): 71-78. DOI:10.4031/mtsj.51.5.6.
[10] Wu Z X, Yu J Z, Yuan J, et al. Mechatronic design and implementation of a novel gliding robotic dolphin[C]// IEEE International Conference on Robotics and Biomimetics(ROBIO). Zhuhai, China, 2015: 267-272. DOI:10.1109/ROBIO.2015.7418778.
[11] Yuan J, Wu Z X, Yu J Z, et al. Sliding mode observer-based heading control for a gliding roboticdolphin[J]. IEEE Transactions on Industrial Electronics, 2017, 64(8): 6815-6824. DOI:10.1109/tie.2017.2674606.
[12] Yu S M, Ma S G, Li B, et al. An amphibious snake-like robot: Design and motion experiments on ground and in water[C]//International Conference on Information and Automation. Zhuhai, Macau, China, 2009: 500-505. DOI:10.1109/ICINFA.2009.5204975.
[13] 唐敬阁, 李斌, 李志强, 等. 水下蛇形机器人的滑翔运动性能研究[J]. 高技术通讯, 2017, 27(3): 269-276. DOI: 10.3772/j.issn.1002-0470.2017.03.010.
Tang J G, Li B, Li Z Q, et al. Research on the gliding performance of underwater snake-like robots [J]. Chinese High Technology Letters, 2017, 27(3): 269-276. DOI:10.3772/j.issn.1002-0470.2017.03.010. (in Chinese)
[14] Graver J G, Leonard N E. Underwater glider dynamics and control[C]//12th International Symposium on Unmanned Untethered Submersible Technology. Durham, England, 2001: 1742-1710.
[15] Stevens B L, Lewis F L. Aircraft control and simulation [M]. New York: Wiley, 1992: 51-109.

备注/Memo

备注/Memo:
收稿日期: 2018-07-04.
作者简介: 唐敬阁(1991—),女,博士生;常健(联系人),男,博士,副研究员,changjian@sia.cn.
基金项目: 国家重点研发计划资助项目(2017YFB1300101).
引用本文: 唐敬阁,李斌,常健,等.水下滑翔蛇形机器人滑翔运动建模与优化控制[J].东南大学学报(自然科学版),2019,49(1):94-100. DOI:10.3969/j.issn.1001-0505.2019.01.014.
更新日期/Last Update: 2019-01-20