[1]苏春,胡照勇,郑玉巧.基于可用度约束的风力机单部件顺序维修优化[J].东南大学学报(自然科学版),2019,49(1):110-115.[doi:10.3969/j.issn.1001-0505.2019.01.016]
 Su Chun,Hu Zhaoyong,Zheng Yuqiao.Single part sequential maintenance optimization for wind turbines based on availability constraint[J].Journal of Southeast University (Natural Science Edition),2019,49(1):110-115.[doi:10.3969/j.issn.1001-0505.2019.01.016]
点击复制

基于可用度约束的风力机单部件顺序维修优化()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
49
期数:
2019年第1期
页码:
110-115
栏目:
机械工程
出版日期:
2019-01-20

文章信息/Info

Title:
Single part sequential maintenance optimization for wind turbines based on availability constraint
作者:
苏春1胡照勇1郑玉巧2
1东南大学机械工程学院, 南京 211189; 2兰州理工大学机电工程学院, 兰州 730050
Author(s):
Su Chun1 Hu Zhaoyong1 Zheng Yuqiao2
1School of Mechanical Engineering, Southeast University, Nanjing 211189, China
2School of Mechanical and Electrical Engineering, Lanzhou University of Technology, Lanzhou 730050, China
关键词:
风力机 可靠性 可用度 有效年龄 顺序维修
Keywords:
wind turbine reliability availability effective age sequential maintenance
分类号:
TH17
DOI:
10.3969/j.issn.1001-0505.2019.01.016
摘要:
为提高风电场运行维护效率,以风力机为对象开展风力机单部件顺序维修优化研究.通过引入有效年龄的概念,考虑改善因子随维修次数的增加而降低的情况,分析最小维修、不完全维修和更换对风力机有效年龄的影响.考虑维护期内突发性维修成本、不完全维修成本、更换成本、停机损失和固定成本,将部件单生命周期划分为若干个维护期,以维护期个数和维护期时间间隔为决策变量,部件更换周期内单位时间维护成本最低为目标,建立可用度约束下的风力机单部件顺序维修优化模型.采用内点法和枚举法求解模型,完成算例分析,并验证模型的有效性.结果表明,与传统的周期维修和顺序维修相比,该模型求解得到的最佳维修计划可以保证风力机各部件的可用度均在98%以上,且维护期时间间隔更加符合工程实际.
Abstract:
To improve the efficiency of operation and maintenance of wind farms, the single part maintenance optimization problem of wind turbines was studied. The effective age was introduced to describe the reduction of improvement factors with the number of the maintenance, and the influences of minimal repair, imperfect repair and replacement on the effective age of the component were analyzed. The replacement cycle was divided into several maintenance periods. Considering the maintenance cost, downtime losses, fixed cost and availability, and taking the number of maintenance periods and the length of each maintenance period as variables, a sequential maintenance optimization model for single part was proposed with the goal to minimize the maintenance cost per unit time in a replacement period. The interior point method and the enumeration method were used to solve the model. A case study was given to prove the validity of the model. The results show that compared with the traditional periodical maintenance and sequential maintenance, the optimal maintenance plan obtained by the model can ensure that the availability of wind turbine components is above 98%, and the maintenance period is more in line with engineering practice.

参考文献/References:

[1] Panwar N L, Kaushik S C, Kothari S. Role of renewable energy sources in environmental protection: A review[J]. Renewable and Sustainable Energy Reviews, 2011, 15(3): 1513-1524. DOI:10.1016/j.rser.2010.11.037.
[2] Su C, Hu Z Y. Reliability assessment for Chinese domestic wind turbines based on data mining techniques[J]. Wind Energy, 2018, 21(3): 198-209. DOI:10.1002/we.2155.
[3] 夏云峰. 2017年中国风电行业关键数据汇总[J]. 风能, 2018(3): 34-36.
  Xia Y F. Key data collection of China wind power industry in 2017 [J]. Wind Energy, 2018(3): 34-36.(in Chinese)
[4] Qian P, Ma X D, Cross P. Integrated data-driven model-based approach to condition monitoring of the wind turbine gearbox[J]. IET Renewable Power Generation, 2017, 11(9): 1177-1185. DOI:10.1049/iet-rpg.2016.0216.
[5] Chan D, Mo J. Life cycle reliability and maintenance analyses of wind turbines[J]. Energy Procedia, 2017, 110: 328-333. DOI:10.1016/j.egypro.2017.03.148.
[6] Slimacek V, Lindqvist B H. Reliability of wind turbines modeled by a Poisson process with covariates, unobserved heterogeneity and seasonality[J]. Wind Energy, 2016, 19(11): 1991-2002. DOI:10.1002/we.1964.
[7] Lin Y G, Tu L, Liu H W, et al. Fault analysis of wind turbines in China[J]. Renewable and Sustainable Energy Reviews, 2016, 55: 482-490. DOI:10.1016/j.rser.2015.10.149.
[8] Zhang C, Gao W, Guo S, et al. Opportunistic maintenance for wind turbines considering imperfect, reliability-based maintenance[J]. Renewable Energy, 2017, 103: 606-612. DOI:10.1016/j.renene.2016.10.072.
[9] Li Y F, Valla S, Zio E. Reliability assessment of generic geared wind turbines by GTST-MLD model and Monte Carlo simulation[J]. Renewable Energy, 2015, 83: 222-233. DOI:10.1016/j.renene.2015.04.035.
[10] Su C, Jin Q, Fu Y Q. Correlation analysis for wind speed and failure rate of wind turbines using time series approach[J]. Journal of Renewable and Sustainable Energy,2012,4(3):032301.DOI:10.1063/1.4730597.
[11] Su C, Fu Y. Assessment for wind turbines considering the influence of wind speed using Bayesian network [J]. Eksploatacja i Niezawodnosc—Maintenance and Reliability, 2014, 16(1): 1-8.
[12] Guo H T, Watson S, Tavner P, et al. Reliability analysis for wind turbines with incomplete failure data collected from after the date of initial installation[J]. Reliability Engineering & System Safety, 2009, 94(6): 1057-1063. DOI:10.1016/j.ress.2008.12.004.
[13] Santos F P, Teixeira A P, Guedes Soares C. Maintenance planning of an offshore wind turbine using stochastic petri nets with predicates[J]. Journal of Offshore Mechanics and Arctic Engineering, 2018, 140(2): 021904. DOI:10.1115/1.4038934.
[14] Sarker B R, Faiz T I. Minimizing maintenance cost for offshore wind turbines following multi-level opportunistic preventive strategy[J]. Renewable Energy, 2016, 85: 104-113. DOI:10.1016/j.renene.2015.06.030.
[15] Sinha Y, Steel J A. A progressive study into offshore wind farm maintenance optimisation using risk based failure analysis[J]. Renewable and Sustainable Energy Reviews, 2015, 42: 735-742. DOI:10.1016/j.rser.2014.10.087.
[16] 苏春, 陈武. 基于滚动窗口方法的风力机动态机会维修优化[J]. 机械工程学报, 2014, 50(14): 62-68. DOI:10.3901/JME.2014.14.062.
Su C, Chen W. Dynamic opportunistic maintenance optimization for wind turbine system based on rolling horizon approach[J]. Journal of Mechanical Engineering, 2014, 50(14): 62-68. DOI:10.3901/JME.2014.14.062. (in Chinese)
[17] Ding F F, Tian Z G. Opportunistic maintenance for wind farms considering multi-level imperfect maintenance thresholds[J]. Renewable Energy, 2012, 45: 175-182. DOI:10.1016/j.renene.2012.02.030.
[18] 苏春, 周小荃. 基于有效年龄的风力机多部件维修优化[J]. 东南大学学报(自然科学版), 2012, 42(6): 1100-1104. DOI:10.3969/j.issn.1001-0505.2012.06.015.
Su C, Zhou X Q. Maintenance optimization for multi-component of wind turbine based on effective age[J]. Journal of Southeast University(Natural Science Edition), 2012, 42(6): 1100-1104. DOI:10.3969/j.issn.1001-0505.2012.06.015. (in Chinese)
[19] Li L, Hanson T E. A Bayesian semiparametric regression model for reliability data using effective age[J]. Computational Statistics & Data Analysis, 2014, 73: 177-188. DOI:10.1016/j.csda.2013.11.015.
[20] 赵永强, 梁工谦. 可靠性及动态维修成本下的定期预防维修研究[J].航空制造技术,2012(7):89-91,95.DOI:10.3969/j.issn.1671-833X.2012.07.016.
Zhao Y Q, Liang G Q. Periodic preventive maintenance based on reliability and dynamic maintenance cost[J]. Aeronautical Manufacturing Technology, 2012(7): 89-91,95. DOI:10.3969/j.issn.1671-833X.2012.07.016. (in Chinese)
[21] 陈宝林. 最优化理论与算法[M]. 2版. 北京: 清华大学出版社, 2005: 401-405.

相似文献/References:

[1]苏志勇,周颖,李必信.面向用户的Web服务可靠性计算模型[J].东南大学学报(自然科学版),2008,38(4):605.[doi:10.3969/j.issn.1001-0505.2008.04.012]
 Su Zhiyong,Zhou Ying,Li Bixin.User-oriented Web services reliability computing model[J].Journal of Southeast University (Natural Science Edition),2008,38(1):605.[doi:10.3969/j.issn.1001-0505.2008.04.012]
[2]周星德,汪凤泉.基于可靠性的框架结构作动器/传感器最优配置[J].东南大学学报(自然科学版),2003,33(6):746.[doi:10.3969/j.issn.1001-0505.2003.06.016]
 Zhou Xingde,Wang Fengquan.Optimal disposition of actuators/sensors of frame structures based on reliability[J].Journal of Southeast University (Natural Science Edition),2003,33(1):746.[doi:10.3969/j.issn.1001-0505.2003.06.016]
[3]谢春丽,李必信,苏志勇.基于WSDG的Web服务组合可靠性预测[J].东南大学学报(自然科学版),2012,42(6):1074.[doi:10.3969/j.issn.1001-0505.2012.06.010]
 Xie Chunli,Li Bixin,Su Zhiyong.WSDG-based reliability prediction approach for Web service composition[J].Journal of Southeast University (Natural Science Edition),2012,42(1):1074.[doi:10.3969/j.issn.1001-0505.2012.06.010]
[4]郑蕊,李兆霞.基于结构健康监测系统的桥梁疲劳寿命可靠性评估[J].东南大学学报(自然科学版),2001,31(6):71.[doi:10.3969/j.issn.1001-0505.2001.06.017]
 Zheng Rui,Li Zhaoxia.Reliable Evaluation of Bridge Fatigue Life Based on Structural Health Monitoring System[J].Journal of Southeast University (Natural Science Edition),2001,31(1):71.[doi:10.3969/j.issn.1001-0505.2001.06.017]
[5]刘文宝,戴洪磊,邓学钧.GIS中图形数据的可靠性评价[J].东南大学学报(自然科学版),1999,29(2):111.[doi:10.3969/j.issn.1001-0505.1999.02.021]
 Liu Wenbao,Dai Honglei,Deng Xuejun.Assessment on the Reliability of Graph Data in GIS Database[J].Journal of Southeast University (Natural Science Edition),1999,29(1):111.[doi:10.3969/j.issn.1001-0505.1999.02.021]
[6]胡敏美.输电系统的可靠性评估[J].东南大学学报(自然科学版),1992,22(4):18.[doi:10.3969/j.issn.1001-0505.1992.04.003]
 Hu Minyou.Reliability Assessment of Transmission System[J].Journal of Southeast University (Natural Science Edition),1992,22(1):18.[doi:10.3969/j.issn.1001-0505.1992.04.003]
[7]杨汉国,黄跃平,高建和.架空输电线紧线器的可靠性设计[J].东南大学学报(自然科学版),1989,19(3):96.[doi:10.3969/j.issn.1001-0505.1989.03.014]
 Yang Hanguo Huang Yueping (Department of Mathematics and Mechanics)Gao Jianhe (Yangzhou Institute of Technology).The Reliability Design of Mounting Strain Clamps[J].Journal of Southeast University (Natural Science Edition),1989,19(1):96.[doi:10.3969/j.issn.1001-0505.1989.03.014]
[8]陈绍群,孙大有,时龙兴.第二代无线寻呼机的功能与特点[J].东南大学学报(自然科学版),1993,23(2):140.[doi:10.3969/j.issn.1001-0505.1993.02.024]
 [J].Journal of Southeast University (Natural Science Edition),1993,23(1):140.[doi:10.3969/j.issn.1001-0505.1993.02.024]
[9]陈天雄.轮箍钢断裂韧性的试验研究[J].东南大学学报(自然科学版),1985,15(2):9.[doi:10.3969/j.issn.1001-0505.1985.02.002]
 Chen Tianxiong.A Study on Fracture Toughness of Boss Steel[J].Journal of Southeast University (Natural Science Edition),1985,15(1):9.[doi:10.3969/j.issn.1001-0505.1985.02.002]
[10]李伟,周菁楠,周峰,等.基于结构可靠性算法的停车换乘行程时间可靠性计算[J].东南大学学报(自然科学版),2016,46(1):226.[doi:10.3969/j.issn.1001-0505.2016.01.037]
 Li Wei,Zhou Jingnan,Zhou Feng,et al.Calculation of travel time reliability of park-and-ride based on structural reliability algorithm[J].Journal of Southeast University (Natural Science Edition),2016,46(1):226.[doi:10.3969/j.issn.1001-0505.2016.01.037]

备注/Memo

备注/Memo:
收稿日期: 2018-07-05.
作者简介: 苏春(1970—),男,博士,教授,博士生导师,suchun@seu.edu.cn.
基金项目: 国家自然科学基金资助项目(71671035)、江苏风力发电工程技术中心开放基金资助项目(ZK15-03-01,ZK16-03-07)、兰州市人才创新创业资助项目(2018-RC-25).
引用本文: 苏春,胡照勇,郑玉巧.基于可用度约束的风力机单部件顺序维修优化[J].东南大学学报(自然科学版),2019,49(1):110-115. DOI:10.3969/j.issn.1001-0505.2019.01.016.
更新日期/Last Update: 2019-01-20