[1]余传运,张建润.输电塔线体系动力特性及风振响应分析[J].东南大学学报(自然科学版),2019,49(1):116-124.[doi:10.3969/j.issn.1001-0505.2019.01.017]
 Yu Chuanyun,Zhang Jianrun.Analysis on dynamic characteristics and wind-induced vibration response of transmission line systems[J].Journal of Southeast University (Natural Science Edition),2019,49(1):116-124.[doi:10.3969/j.issn.1001-0505.2019.01.017]
点击复制

输电塔线体系动力特性及风振响应分析()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
49
期数:
2019年第1期
页码:
116-124
栏目:
土木工程
出版日期:
2019-01-20

文章信息/Info

Title:
Analysis on dynamic characteristics and wind-induced vibration response of transmission line systems
作者:
余传运张建润
东南大学机械工程学院, 南京211189
Author(s):
Yu Chuanyun Zhang Jianrun
School of Mechanical Engineering, Southeast University, Nanjing 211189, China
关键词:
输电塔线体系 风载荷 动力特性 风振响应 耦合效应
Keywords:
transmission line system wind load dynamic characteristics wind-induced vibration response coupling effect
分类号:
TU311.3
DOI:
10.3969/j.issn.1001-0505.2019.01.017
摘要:
基于110 kV高压输电塔项目,建立了输电塔线体系有限元模型,并验证了输电线有限元模型的准确性.对单塔及塔线体系的动力特性进行分析,分析表明,塔线体系平面外振动耦合效应大于平面内.以谐波叠加法对输电塔线体系风载荷时程进行了数值模拟,对单塔和塔线体系的风振响应进行了时域分析.结果表明,输电塔和输电线风振响应均以一阶振型为主.塔线体系塔顶位移响应均方根值在0°风向角下是单塔的1.73倍,而90°风向角情况下是单塔的4.95倍.90°风向角情况下塔线体系塔顶位移背景响应分量增加较大,塔线耦合效应大于0°风向角情况.输电塔和输电线的平面内耦合效应通过输电线端部动张力差实现.输电塔塔身第2层主材所受应力大于其他各层,是倒塌破坏的危险位置.
Abstract:
Based on a 110 kV high voltage transmission tower project, a finite element model for the transmission line system was established, and the accuracy of transmission line finite element model is verified. The dynamic characteristics of the single tower and the tower line system were analyzed. The results show that the coupling effect on the vibration outside plane of tower line system is greater than that on the plane. The wind load time history of the transmission line system is numerically simulated by a harmonic superposition method, and the wind vibration response on the single tower and the tower line system is analyzed in the time domain. The wind vibration response on the transmission tower and the transmission line is mainly first-order vibration mode. The root mean square value of displacement response at the top of the transmission line system is 1.73 times that of the single tower at 0 °wind direction angle, 4.95 times the single tower at 90 °wind direction angle.The background response component of the top displacement of the transmission line system increases greatly at 90 °wind direction angle, the coupling effect is greater than 0 °wind direction angle. The in-plane coupling effect between the transmission tower and the transmission line is realized by a dynamic tension difference of the transmission line.The stress of the second layer of transmission tower is higher than that of other layers, it is the dangerous position of collapse.

参考文献/References:

[1] 李春祥, 李锦华, 于志强. 输电塔线体系抗风设计理论与发展[J]. 振动与冲击, 2009, 28(10): 15-25. DOI:10.3969/j.issn.1000-3835.2009.10.004.
Li C X, Li J H, Yu Z Q. A review of wind-resistant design theories of transmission tower-line systems[J]. Journal of Vibration and Shock, 2009, 28(10): 15-25. DOI:10.3969/j.issn.1000-3835.2009.10.004. (in Chinese)
[2] Aboshosha H, Elawady A, El Ansary A, et al. Review on dynamic and quasi-static buffeting response of transmission lines under synoptic and non-synoptic winds[J]. Engineering Structures, 2016, 112: 23-46. DOI:10.1016/j.engstruct.2016.01.003.
[3] 张庆华, 顾明. 典型格构式结构风荷载及风致响应规范比较[J]. 振动与冲击, 2015, 34(6): 140-145. DOI:10.13465/j.cnki.jvs.2015.06.027.
Zhang Q H, Gu M. Comparison among wind loads and wind-induced responses of typical lattice structures obtained using various codes[J]. Journal of Vibration and Shock, 2015, 34(6): 140-145. DOI:10.13465/j.cnki.jvs.2015.06.027. (in Chinese)
[4] 郭勇, 孙炳楠, 叶尹. 大跨越输电塔线体系风振响应的时域分析[J]. 土木工程学报, 2006, 39(12): 12-17. DOI:10.3321/j.issn:1000-131X.2006.12.003.
Guo Y, Sun B N, Ye Y. Time-domain analysis on wind-induced dynamic response of long span power transmission line systems[J]. China Civil Engineering Journal, 2006, 39(12): 12-17. DOI:10.3321/j.issn:1000-131X.2006.12.003. (in Chinese)
[5] 舒爱强, 吴海洋, 邹良浩, 等. 高压大跨越输电塔-线体系动力特性计算分析[J]. 土木工程学报, 2010, 43(S1): 224-229. DOI:10.15951/j.tmgcxb.2010.s1.022.
Shu A Q, Wu H Y, Zou L H, et al. Analysis of 3-D dynamic characteristics of high-voltage long-span transmission tower-line system[J]. China Civil Engineering Journal, 2010, 43(S1): 224-229. DOI:10.15951/j.tmgcxb.2010.s1.022. (in Chinese)
[6] Zhou C, Liu Y B. Analytical model of high-voltage transmission line subjected to the downburst wind with rainfall[J]. Advances in Mechanical Engineering, 2015, 7(3): 168781401557543. DOI:10.1177/1687814015575435.
[7] Shu Q J, Yuan G L, Huang Z H, et al. The behaviour of the power transmission tower subjected to horizontal support’s movements[J]. Engineering Structures, 2016, 123: 166-180. DOI:10.1016/j.engstruct.2016.05.027.
[8] Chen B, Xiao X, Li P Y, et al. Performance evaluation on transmission tower-line system with passive friction dampers subjected to wind excitations[J]. Shock and Vibration, 2015, 2015: 1-13. DOI:10.1155/2015/310458.
[9] 安利强, 张志强, 黄仁谋, 等. 台风作用下输电塔线体系动力响应分析[J]. 振动与冲击, 2017, 36(23): 255-262. DOI:10.13465/j.cnki.jvs.2017.23.037.
An L Q, Zhang Z Q, Huang R M, et al. Dynamic response analysis of a transmission tower-line system under typhoon[J]. Journal of Vibration and Shock, 2017, 36(23): 255-262. DOI:10.13465/j.cnki.jvs.2017.23.037. (in Chinese)
[10] Zhang M, Zhao G F, Wang L L, et al. Wind-induced coupling vibration effects of high-voltage transmission tower-line systems[J]. Shock and Vibration, 2017, 2017: 1-34. DOI:10.1155/2017/1205976.
[11] Fu X, Li H N. Dynamic analysis of transmission tower-line system subjected to wind and rain loads[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2016, 157: 95-103. DOI:10.1016/j.jweia.2016.08.010.
[12] Zhang X L, Ju Y Z, Wang F W. Statistical analysis of wind-induced dynamic response of power towers and four-circuit transmission tower-line system[J]. Shock and Vibration, 2018, 2018: 1-18. DOI:10.1155/2018/5064930.
[13] Hamada A, King J P C, El Damatty A A, et al. The response of a guyed transmission line system to boundary layer wind[J]. Engineering Structures, 2017, 139: 135-152. DOI:10.1016/j.engstruct.2017.01.047.
[14] Hung P V, Yamaguchi H, Isozaki M, et al. Large amplitude vibrations of long-span transmission lines with bundled conductors in gusty wind[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2014, 126: 48-59. DOI:10.1016/j.jweia.2014.01.002.
[15] Edgar T H, Sordo E. Structural behaviour of lattice transmission towers subjected to wind load[J]. Structure and Infrastructure Engineering, 2017, 13(11): 1462-1475. DOI:10.1080/15732479.2017.1290120.
[16] 袁驷, 程大业, 叶康生. 索结构找形分析的精确单元方法[J]. 建筑结构学报, 2005, 26(2): 46-51. DOI:10.3321/j.issn:1000-6869.2005.02.007.
Yuan S, Cheng D Y, Ye K S. Exact element method for form-finding analysis of cable structures[J].Journal of Building Structures, 2005, 26(2): 46-51. DOI:10.3321/j.issn:1000-6869.2005.02.007. (in Chinese)
[17] An X W, Gosling P D, Zhou X Y. Analytical structural reliability analysis of a suspended cable[J]. Structural Safety, 2016, 58: 20-30. DOI:10.1016/j.strusafe.2015.08.001.
[18] 武岳,孙瑛,郑朝荣.风工程与结构抗风设计[M].哈尔滨:哈尔滨工业大学出版社,2014:22-39.
[19] 黄本才, 汪丛军. 结构抗风分析原理及应用[M]. 2版. 上海: 同济大学出版社, 2008:18-114.
[20] Li J, Li L J, Wang X. Separation of background and resonant components of wind-induced response for flexible structures[J]. Structural Engineering and Mechanics, 2015, 53(3): 607-623. DOI:10.12989/sem.2015.53.3.607.
[21] 李玉学, 杨庆山, 田玉基, 等. 背景和共振响应的时域划分及模态耦合简化分析[J]. 振动工程学报, 2015, 28(2): 269-276. DOI:10.16385/j.cnki.issn.1004-4523.2015.02.013.
Li Y X, Yang Q S,Tian Y J, et al. Background response and resonant response divided in time domain and simplified analysis for modal coupling effects[J]. Journal of Vibration Engineering, 2015, 28(2): 269-276. DOI:10.16385/j.cnki.issn.1004-4523.2015.02.013. (in Chinese)

备注/Memo

备注/Memo:
收稿日期: 2018-07-05.
作者简介: 余传运(1992—),男,硕士生;张建润(联系人),男,博士,教授,博士生导师,zhangjr@seu.edu.cn.
引用本文: 余传运,张建润.输电塔线体系动力特性及风振响应分析[J].东南大学学报(自然科学版),2019,49(1):116-124. DOI:10.3969/j.issn.1001-0505.2019.01.017.
更新日期/Last Update: 2019-01-20