[1]喻聪,司风琪,董云山,等.燃煤电站SCR系统气固流动与催化剂磨损的混合数值模拟与优化[J].东南大学学报(自然科学版),2019,49(1):133-140.[doi:10.3969/j.issn.1001-0505.2019.01.019]
 Yu Cong,Si Fengqi,Dong Yunshan,et al.Coupled simulation and optimization of gas-solid flow and catalyst erosion for SCR system in coal-fired power plant[J].Journal of Southeast University (Natural Science Edition),2019,49(1):133-140.[doi:10.3969/j.issn.1001-0505.2019.01.019]
点击复制

燃煤电站SCR系统气固流动与催化剂磨损的混合数值模拟与优化()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
49
期数:
2019年第1期
页码:
133-140
栏目:
能源与动力工程
出版日期:
2019-01-20

文章信息/Info

Title:
Coupled simulation and optimization of gas-solid flow and catalyst erosion for SCR system in coal-fired power plant
作者:
喻聪1司风琪1董云山1江晓明2
1东南大学能源热转换及其过程测控教育部重点实验室, 南京 210096; 2大唐南京环保科技有限责任公司, 南京 211100
Author(s):
Yu Cong1 Si Fengqi1 Dong Yunshan1 Jiang Xiaoming2
1Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, Southeast University, Nanjing 210096, China
2 Datang Nanjing Environmental Protection Technology Co., Ltd., Nanjing 211100, China
关键词:
燃煤锅炉 SCR系统 气固两相流 催化剂磨损 混合数值模拟
Keywords:
coal-fired boiler selective catalytic reduction(SCR)system gas-solid flow catalyst erosion hybrid simulation
分类号:
TK224.1
DOI:
10.3969/j.issn.1001-0505.2019.01.019
摘要:
以某660 MW燃煤锅炉SCR脱硝系统为对象,建立了电站实际烟气环境下的催化剂磨损评估模型.首先,利用计算流体力学软件(CFD)搭建SCR反应器模型,计算反应器内气流分布及飞灰颗粒轨迹.在此基础上,采用MATLAB软件构建催化剂床层内部详细结构,并以CFD模型计算的流场及灰场为边界条件,计算空间不同区域催化剂的磨损速率.模拟结果与冷态试验及磨损抽检试验结果吻合良好.结果表明,催化剂的磨损与入口流场均呈现双峰分布,割除整流器上方三角筋能使催化剂入口速度标准偏差从23.2%下降至10.2%,使磨损双峰大幅降低;改造转角烟道导流板能降低贴墙气流的速度,提高颗粒分散度,使催化剂入口飞灰浓度的标准偏差从63.4%降至55.6%,消除了前墙附近催化剂磨损过重的现象.
Abstract:
A selective catalytic reduction(SCR)system in 660 MW coal-fired boiler was taken as an example, and a erosion model was developed for the SCR catalysts in actual gas environment of the power plant. First, a three-dimensional computational fluid dynamics(CFD)model for the SCR reactor was established to obtain the distribution of flue gas and ash particles. Then, the detailed structures of the inner catalyst layer were simulated by MATLAB program. According to the boundary conditions obtained from CFD models, the erosion rates in the different regions were calculated. The simulation results were in good agreements with that of the cold state test and erosion measurements. The result indicates that the erosion rate and the velocity in front of the catalyst layer are both bimodal distribution, the removal of the the triangular beams can reduce the deviation of gas velocity from 23.2% to 10.2% and play a major role in decreasing the erosion degree in the bimodal region. Furthermore, after retrofitting the turning vanes, the gas velocity closed to the wall decreases, and the ash particles disperse well, reducing the deviation of ash concentration from 63.4% to 55.6% and eliminating the heavy erosion near the front wall.

参考文献/References:

[1] 杨航, 郑成航, 金侃, 等. 燃煤电厂选择性催化还原脱硝系统运行成本[J]. 浙江大学学报(工学版), 2017, 51(2): 363-369. DOI:10.3785/j.issn.1008-973X.2017.02.019.
Yang H,Zheng C H, Jin K, et al. Analysis on operation cost of SCR system in coal-fired power plant[J]. Journal of Zhejiang University(Engineering Science), 2017, 51(2): 363-369. DOI:10.3785/j.issn.1008-973X.2017.02.019. (in Chinese)
[2] 姜烨, 高翔, 吴卫红, 等. 选择性催化还原脱硝催化剂失活研究综述[J]. 中国电机工程学报, 2013, 33(14): 18-31,13. DOI:10.13334/j.0258-8013.pcsee.2013.14.002.
Jiang Y, Gao X, Wu W H, et al. Review of the deactivation of selective catalytic reduction DeNOx catalysts[J]. Proceedings of the CSEE, 2013, 33(14): 18-31,13. DOI:10.13334/j.0258-8013.pcsee.2013.14.002. (in Chinese)
[3] Xu Y Y, Zhang Y, Liu F N, et al. CFD analysis on the catalyst layer breakage failure of an SCR-DeNOx system for a 350 MW coal-fired power plant[J]. Computers & Chemical Engineering, 2014, 69: 119-127. DOI:10.1016/j.compchemeng.2014.07.012.
[4] Broske D. Protocol for laboratory testing SCR catalyst samples[R]. Palo Alto, CA, USA: Electric Power Research Institute, 2007.
[5] Xu Y Y, Zhang Y, Wang J C, et al. Application of CFD in the optimal design of a SCR-DeNOx system for a 300 MW coal-fired power plant[J]. Computers & Chemical Engineering, 2013, 49: 50-60. DOI:10.1016/j.compchemeng.2012.09.014.
[6] 高畅, 金保昇, 张勇, 等. 非均匀入口条件下SCR脱硝系统精准喷氨策略[J]. 东南大学学报(自然科学版), 2017, 47(2): 271-276. DOI:10.3969/j.issn.1001-0505.2017.02.013.
Gao C, Jin B S, Zhang Y, et al. Precise ammonia injection strategy in SCR denitrification system based on non-uniform inlet parameters[J]. Journal of Southeast University(Natural Science Edition), 2017, 47(2): 271-276. DOI:10.3969/j.issn.1001-0505.2017.02.013. (in Chinese)
[7] 刘国富, 沈德魁, 肖睿. 基于流场诊断的燃煤电站SCR系统喷氨优化及试验验证[J]. 东南大学学报(自然科学版), 2017, 47(1): 98-106. DOI:10.3969/j.issn.1001-0505.2017.01.018.
Liu G F, Shen D K, Xiao R. Optimization and experimental verification of AIG tuning for SCR system of coal-fired power station based on diagnose of flow field[J]. Journal of Southeast University(Natural Science Edition), 2017, 47(1): 98-106. DOI:10.3969/j.issn.1001-0505.2017.01.018. (in Chinese)
[8] Park H C, Choi H S, Choi Y S. Numerical study on the erosion characteristics of scr catalyst duct by varying its geometrical configuration[J]. Journal of Computational Fluids Engineering, 2011, 16(2): 66-74. DOI:10.6112/kscfe.2011.16.2.066.
[9] Heiredal M L, Jensen A D, Th�F8;gersen J R, et al. Pilot-scale investigation and CFD modeling of particle deposition in low-dust monolithic SCR DeNOx catalysts[J]. AIChE Journal, 2013, 59(6): 1919-1933. DOI:10.1002/aic.13990.
[10] 李晗天, 宋蔷, 姚强. SCR反应器入口速度与氨分布不均匀性对脱硝性能的影响[J]. 中国电机工程学报, 2017, 37(9): 2599-2607.DOI:10.13334/j.0258-8013.9csee.160923.
Li H T, Song Q, Yao Q. Influence of non-uniform distributions of inlet velocity and reductant on SCR DeNOx performance[J]. Proceedings of the CSEE, 2017, 37(9): 2599-2607.DOI:10.13334/j.0258-8013.9csee.160923. (in Chinese)
[11] 雷达, 金保升. 基于复相催化反应动力学的电站SCR系统三维数值模型[J]. 燃烧科学与技术, 2010, 16(3): 236-240.
  Lei D, Jin B S. 3-D numerical model of a power station SCR system based on heterogeneous reaction kinetics[J]. Journal of Combustion Science and Technology, 2010, 16(3): 236-240.(in Chinese)
[12] Lei Z G, Wen C P, Zhang J, et al. Selective catalytic reduction for NO removal: Comparison of transfer and reaction performances among monolith catalysts[J]. Industrial & Engineering Chemistry Research, 2011, 50(10): 5942-5951. DOI:10.1021/ie102206x.
[13] 姚杰. SCR燃煤烟气脱硝催化剂制备及脱硝系统的数值模拟[D]. 南京:东南大学能源与环境学院, 2014.
[14] Gui N, Yang X T, Tu J Y, et al. A generalized particle-to-wall collision model for non-spherical rigid particles[J]. Advanced Powder Technology, 2016, 27(1): 154-163. DOI:10.1016/j.apt.2015.12.002.
[15] Pereira G C, de Souza F J, de Moro Martins D A. Numerical prediction of the erosion due to particles in elbows[J]. Powder Technology, 2014, 261: 105-117. DOI:10.1016/j.powtec.2014.04.033.
[16] Schade K P, Erdmann H J, H�E4;drich T, et al. Experimental and numerical investigation of particle erosion caused by pulverised fuel in channels and pipework of coal-fired power plant[J]. Powder Technology, 2002, 125(2/3): 242-250. DOI:10.1016/S0032-5910(01)00512-5.
[17] Yu C, Si F Q, Ren S J, et al. Experimental and numerical predictions of ash particle erosion in SCR monolithic catalysts for coal-fired utility boilers[J]. Korean Journal of Chemical Engineering, 2017, 34(5): 1563-1575. DOI:10.1007/s11814-017-0001-9.
[18] Kuan B, Rea N, Schwarz M P. Application of CFD in the design of a grit collection system for the coal-fired power generation industry[J]. Powder Technology, 2007, 179(1/2): 65-72. DOI:10.1016/j.powtec.2006.11.005.

备注/Memo

备注/Memo:
收稿日期: 2018-05-23.
作者简介: 喻聪(1989—),男,博士生;司风琪(联系人),男,教授,博士生导师,fqsi@seu.edu.cn.
引用本文: 喻聪,司风琪,董云山,等.燃煤电站SCR系统气固流动与催化剂磨损的混合数值模拟与优化[J].东南大学学报(自然科学版),2019,49(1):133-140. DOI:10.3969/j.issn.1001-0505.2019.01.019.
更新日期/Last Update: 2019-01-20