# [1]蔡海峰,熊源泉,周海军.水平弯管高压密相气力输送数值模拟[J].东南大学学报(自然科学版),2019,49(1):154-163.[doi:10.3969/j.issn.1001-0505.2019.01.022] 　Cai Haifeng,Xiong Yuanquan,Zhou Haijun.Numerical simulation on dense phase pneumatic conveying under high pressure in horizontal bend[J].Journal of Southeast University (Natural Science Edition),2019,49(1):154-163.[doi:10.3969/j.issn.1001-0505.2019.01.022] 点击复制 水平弯管高压密相气力输送数值模拟() 分享到： var jiathis_config = { data_track_clickback: true };

49

2019年第1期

154-163

2019-01-20

## 文章信息/Info

Title:
Numerical simulation on dense phase pneumatic conveying under high pressure in horizontal bend

Author(s):
Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, Southeast University, Nanjing 210096, China

Keywords:

TK121
DOI:
10.3969/j.issn.1001-0505.2019.01.022

Abstract:
Aimed at dense phase pneumatic conveying under high pressure in horizontal bend(DPPCHPHB), based on the Euler/Euler model, this paper used the kinetic theory of granular flows incorporating Vescovi friction stress model for solids stress, Huilin-Gidaspow drag model for the interaction between gas and particles and Johnson & Jackson wall model for solids wall boundary condition. Therefore, a two-phase flow model was established for simulating DPPCHPHB, and the flow field information and mechanical mechanisms of DPPCHPHB were obtained. The simulation results show that the high concentration region is formed on the outer wall of the bend, and the friction stress between particles and the shear stress between the particles and the wall increase rapidly after particles enter the bend from the upstream horizontal pipe. After the particles enter the downstream horizontal pipe from the bend, the high concentration region on the outer wall of the pipe gradually disappear. In the process of flow, particles settled down to the bottom of the pipe gradually, and the friction stress between particles and the shear stress between the particles and the wall increase correspondingly at the bottom of the pipe. The flow pattern of the horizontal pipe is basically consistent with the electrical capacitance tomography(ECT)diagram. The predicted pressure drop of the horizontal pipe and the bend are in good agreement with experimental date, and the error is less than 14%, thus confirming the reliability of the simulation.

## 参考文献/References:

[1] 胥宇鹏, 熊源泉, 周海军, 等. 水平管段高压超浓相煤粉输送特性的数值模拟[J]. 西安交通大学学报, 2012, 46(5): 38-43.
Xu Y P, Xiong Y Q, Zhou H J, et al. Numerical simulation on pneumatic conveying of dense phase pulverized coal in horizontal pipe at high pressure[J]. Journal of Xi’an Jiaotong University, 2012, 46(5): 38-43.(in Chinese)
[2] Zeng D Z, Zhang E B, Ding Y Y, et al. Investigation of erosion behaviors of sulfur-particle-laden gas flow in an elbow via a CFD-DEM coupling method[J]. Powder Technology, 2018, 329: 115-128. DOI:10.1016/j.powtec.2018.01.056.
[3] Chu K W, Yu A B. Numerical simulation of the gas-solid flow in three-dimensional pneumatic conveying bends[J]. Industrial & Engineering Chemistry Research, 2008, 47(18): 7058-7071. DOI:10.1021/ie800108c.
[4] McCluskey D R, Easson W J, Greated C A, et al. The use of particle image velocimetry to study roping in pneumatic conveyance[J]. Particle & Particle Systems Characterization, 1989, 6(1/2/3/4): 129-132. DOI:10.1002/ppsc.19890060122.
[5] Levy A, Mason D J. The effect of a bend on the particle cross-section concentration and segregation in pneumatic conveying systems[J]. Powder Technology, 1998, 98(2): 95-103. DOI:10.1016/S0032-5910(97)03385-8.
[6] Foroushani A S, Esfahany M N. CFD simulation of gas-solid two-phase flow in pneumatic conveying of wheat[J]. Irannian Journal of Chemistry & Chemical Engineering-International English Edition, 2015, 34(4):123-140.
[7] Lu Y, Tong Z B, Glass D H, et al. Experimental and numerical study of particle velocity distribution in the vertical pipe after a 90° elbow[J]. Powder Technology, 2017, 314: 500-509. DOI:10.1016/j.powtec.2016.11.050.
[8] 匡世波. 基于离散单元法气力输送的数值模拟研究[D]. 沈阳: 东北大学, 2009.
Kuang S B. Compuational study of pneumatic conveying by discrete element model[D]. Shenyang: Northeastern University, 2009.(in Chinese)
[9] Vescovi D, di Prisco C, Berzi D. From solid to granular gases: The steady state for granular materials[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2013, 37(17): 2937-2951. DOI:10.1002/nag.2169.
[10] Lu H L, Gidaspow D. Hydrodynamics of binary fluidization in a riser: CFD simulation using two granular temperatures[J]. Chemical Engineering Science, 2003, 58(16): 3777-3792. DOI:10.1016/S0009-2509(03)00238-0.
[11] Manjula E V P J,Ariyaratne W K H, Ratnayake C, et al. A review of CFD modelling studies on pneumatic conveying and challenges in modelling offshore drill cuttings transport[J]. Powder Technology, 2017, 305: 782-793. DOI:10.1016/j.powtec.2016.10.026.
[12] Jenkins J T, Cowin S C. Theories for flowing granular materials[C]// Mechanics Applied to the Transport of Bulk Materials. New York, USA, 1979: 79-89.
[13] Johnson P C, Nott P, Jackson R. Frictional-collisional equations of motion for participate flows and their application to chutes[J]. Journal of Fluid Mechanics, 1990, 210(1): 501-535. DOI:10.1017/s0022112090001380.
[14] Johnson P C, Jackson R. Frictional-collisional constitutive relations for granular materials, with application to plane shearing [J]. Journal of Fluid Mechanics, 1987, 176(1): 67-93.DOI: 10.1017/S0022112087000570.
[15] Pu W H, Zhao C S, Xiong Y Q, et al. Numerical simulation on dense phase pneumatic conveying of pulverized coal in horizontal pipe at high pressure[J]. Chemical Engineering Science, 2010, 65(8): 2500-2512. DOI:10.1016/j.ces.2009.12.025.
[16] Srivastava A, Sundaresan S. Analysis of a frictional-kinetic model for gas-particle flow[J]. Powder Technology, 2003, 129(1/2/3): 72-85. DOI:10.1016/S0032-5910(02)00132-8.
[17] 蒲文灏. 高压超浓相煤粉气力输送过程及其数值模拟研究[D]. 南京: 东南大学, 2009.

## 相似文献/References:

[1]范春雷,陈晓平,梁财,等.煤粉高压密相气力输送特性[J].东南大学学报(自然科学版),2007,37(3):432.[doi:10.3969/j.issn.1001-0505.2007.03.016]
Fan Chunlei,Chen Xiaoping,Liang Cai,et al.Investigation on characteristics of pulverized coal dense-phase pneumatic conveying under high pressure[J].Journal of Southeast University (Natural Science Edition),2007,37(1):432.[doi:10.3969/j.issn.1001-0505.2007.03.016]
[2]梁财,陈晓平,蒲文灏,等.高压浓相煤粉气力输送差压信号多分辨分析[J].东南大学学报(自然科学版),2006,36(6):967.[doi:10.3969/j.issn.1001-0505.2006.06.019]
Liang Cai,Chen Xiaoping,Pu Wenhao,et al.Application of multi-resolution analysis to differential pressure in dense-phase pneumatic conveying of pulverized coal under high pressure[J].Journal of Southeast University (Natural Science Edition),2006,36(1):967.[doi:10.3969/j.issn.1001-0505.2006.06.019]
[3]周海军,熊源泉.曳力模型对水平管高压密相气力输送模拟的影响[J].东南大学学报(自然科学版),2020,50(3):496.[doi:10.3969/j.issn.1001-0505.2020.03.012]
Zhou Haijun,Xiong Yuanquan.Effect of drag models on simulation of dense-phase pneumatic conveying in horizontal pipe under high pressure[J].Journal of Southeast University (Natural Science Edition),2020,50(1):496.[doi:10.3969/j.issn.1001-0505.2020.03.012]