[1]蔡海峰,熊源泉,周海军.水平弯管高压密相气力输送数值模拟[J].东南大学学报(自然科学版),2019,49(1):154-163.[doi:10.3969/j.issn.1001-0505.2019.01.022]
 Cai Haifeng,Xiong Yuanquan,Zhou Haijun.Numerical simulation on dense phase pneumatic conveying under high pressure in horizontal bend[J].Journal of Southeast University (Natural Science Edition),2019,49(1):154-163.[doi:10.3969/j.issn.1001-0505.2019.01.022]
点击复制

水平弯管高压密相气力输送数值模拟()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
49
期数:
2019年第1期
页码:
154-163
栏目:
能源与动力工程
出版日期:
2019-01-20

文章信息/Info

Title:
Numerical simulation on dense phase pneumatic conveying under high pressure in horizontal bend
作者:
蔡海峰熊源泉周海军
东南大学能源热转换及其过程测控教育部重点实验室, 南京 210096
Author(s):
Cai Haifeng Xiong Yuanquan Zhou Haijun
Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, Southeast University, Nanjing 210096, China
关键词:
气力输送 水平弯管 摩擦应力 壁面剪切力 压降
Keywords:
pneumatic conveying horizontal bend friction stress wall shear stress pressure drop
分类号:
TK121
DOI:
10.3969/j.issn.1001-0505.2019.01.022
摘要:
针对水平弯管高压密相气力输送,基于Euler/Euler双流体模型,引入Vescovi摩擦应力模型、颗粒动理学理论以及Huilin-Gidaspow曳力模型,同时结合Johnson & Jackson壁面模型构建了水平弯管高压密相气力输送两相流模型.并用所得模型对水平弯管进行了模拟计算,获得了其力学机制和管道流场信息.模拟结果表明:颗粒自上游水平管进入弯管后,在管道外壁面附近逐渐形成高浓度区域,颗粒间摩擦应力以及颗粒与壁面剪切应力迅速增大;颗粒由弯管进入下游水平管后,管道外壁面高浓度区域逐渐消失,并在流动过程中,颗粒逐渐沉降,管道底部颗粒间摩擦应力以及颗粒与壁面间剪切应力相应增大;模拟预测的水平管段流型与ECT图基本吻合;模拟预测弯管段和水平管段压降均与试验值相符合,误差在14%以内,证实了模拟的可靠性.
Abstract:
Aimed at dense phase pneumatic conveying under high pressure in horizontal bend(DPPCHPHB), based on the Euler/Euler model, this paper used the kinetic theory of granular flows incorporating Vescovi friction stress model for solids stress, Huilin-Gidaspow drag model for the interaction between gas and particles and Johnson & Jackson wall model for solids wall boundary condition. Therefore, a two-phase flow model was established for simulating DPPCHPHB, and the flow field information and mechanical mechanisms of DPPCHPHB were obtained. The simulation results show that the high concentration region is formed on the outer wall of the bend, and the friction stress between particles and the shear stress between the particles and the wall increase rapidly after particles enter the bend from the upstream horizontal pipe. After the particles enter the downstream horizontal pipe from the bend, the high concentration region on the outer wall of the pipe gradually disappear. In the process of flow, particles settled down to the bottom of the pipe gradually, and the friction stress between particles and the shear stress between the particles and the wall increase correspondingly at the bottom of the pipe. The flow pattern of the horizontal pipe is basically consistent with the electrical capacitance tomography(ECT)diagram. The predicted pressure drop of the horizontal pipe and the bend are in good agreement with experimental date, and the error is less than 14%, thus confirming the reliability of the simulation.

参考文献/References:

[1] 胥宇鹏, 熊源泉, 周海军, 等. 水平管段高压超浓相煤粉输送特性的数值模拟[J]. 西安交通大学学报, 2012, 46(5): 38-43.
  Xu Y P, Xiong Y Q, Zhou H J, et al. Numerical simulation on pneumatic conveying of dense phase pulverized coal in horizontal pipe at high pressure[J]. Journal of Xi’an Jiaotong University, 2012, 46(5): 38-43.(in Chinese)
[2] Zeng D Z, Zhang E B, Ding Y Y, et al. Investigation of erosion behaviors of sulfur-particle-laden gas flow in an elbow via a CFD-DEM coupling method[J]. Powder Technology, 2018, 329: 115-128. DOI:10.1016/j.powtec.2018.01.056.
[3] Chu K W, Yu A B. Numerical simulation of the gas-solid flow in three-dimensional pneumatic conveying bends[J]. Industrial & Engineering Chemistry Research, 2008, 47(18): 7058-7071. DOI:10.1021/ie800108c.
[4] McCluskey D R, Easson W J, Greated C A, et al. The use of particle image velocimetry to study roping in pneumatic conveyance[J]. Particle & Particle Systems Characterization, 1989, 6(1/2/3/4): 129-132. DOI:10.1002/ppsc.19890060122.
[5] Levy A, Mason D J. The effect of a bend on the particle cross-section concentration and segregation in pneumatic conveying systems[J]. Powder Technology, 1998, 98(2): 95-103. DOI:10.1016/S0032-5910(97)03385-8.
[6] Foroushani A S, Esfahany M N. CFD simulation of gas-solid two-phase flow in pneumatic conveying of wheat[J]. Irannian Journal of Chemistry & Chemical Engineering-International English Edition, 2015, 34(4):123-140.
[7] Lu Y, Tong Z B, Glass D H, et al. Experimental and numerical study of particle velocity distribution in the vertical pipe after a 90° elbow[J]. Powder Technology, 2017, 314: 500-509. DOI:10.1016/j.powtec.2016.11.050.
[8] 匡世波. 基于离散单元法气力输送的数值模拟研究[D]. 沈阳: 东北大学, 2009.
  Kuang S B. Compuational study of pneumatic conveying by discrete element model[D]. Shenyang: Northeastern University, 2009.(in Chinese)
[9] Vescovi D, di Prisco C, Berzi D. From solid to granular gases: The steady state for granular materials[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2013, 37(17): 2937-2951. DOI:10.1002/nag.2169.
[10] Lu H L, Gidaspow D. Hydrodynamics of binary fluidization in a riser: CFD simulation using two granular temperatures[J]. Chemical Engineering Science, 2003, 58(16): 3777-3792. DOI:10.1016/S0009-2509(03)00238-0.
[11] Manjula E V P J,Ariyaratne W K H, Ratnayake C, et al. A review of CFD modelling studies on pneumatic conveying and challenges in modelling offshore drill cuttings transport[J]. Powder Technology, 2017, 305: 782-793. DOI:10.1016/j.powtec.2016.10.026.
[12] Jenkins J T, Cowin S C. Theories for flowing granular materials[C]// Mechanics Applied to the Transport of Bulk Materials. New York, USA, 1979: 79-89.
[13] Johnson P C, Nott P, Jackson R. Frictional-collisional equations of motion for participate flows and their application to chutes[J]. Journal of Fluid Mechanics, 1990, 210(1): 501-535. DOI:10.1017/s0022112090001380.
[14] Johnson P C, Jackson R. Frictional-collisional constitutive relations for granular materials, with application to plane shearing [J]. Journal of Fluid Mechanics, 1987, 176(1): 67-93.DOI: 10.1017/S0022112087000570.
[15] Pu W H, Zhao C S, Xiong Y Q, et al. Numerical simulation on dense phase pneumatic conveying of pulverized coal in horizontal pipe at high pressure[J]. Chemical Engineering Science, 2010, 65(8): 2500-2512. DOI:10.1016/j.ces.2009.12.025.
[16] Srivastava A, Sundaresan S. Analysis of a frictional-kinetic model for gas-particle flow[J]. Powder Technology, 2003, 129(1/2/3): 72-85. DOI:10.1016/S0032-5910(02)00132-8.
[17] 蒲文灏. 高压超浓相煤粉气力输送过程及其数值模拟研究[D]. 南京: 东南大学, 2009.

相似文献/References:

[1]范春雷,陈晓平,梁财,等.煤粉高压密相气力输送特性[J].东南大学学报(自然科学版),2007,37(3):432.[doi:10.3969/j.issn.1001-0505.2007.03.016]
 Fan Chunlei,Chen Xiaoping,Liang Cai,et al.Investigation on characteristics of pulverized coal dense-phase pneumatic conveying under high pressure[J].Journal of Southeast University (Natural Science Edition),2007,37(1):432.[doi:10.3969/j.issn.1001-0505.2007.03.016]
[2]梁财,陈晓平,蒲文灏,等.高压浓相煤粉气力输送差压信号多分辨分析[J].东南大学学报(自然科学版),2006,36(6):967.[doi:10.3969/j.issn.1001-0505.2006.06.019]
 Liang Cai,Chen Xiaoping,Pu Wenhao,et al.Application of multi-resolution analysis to differential pressure in dense-phase pneumatic conveying of pulverized coal under high pressure[J].Journal of Southeast University (Natural Science Edition),2006,36(1):967.[doi:10.3969/j.issn.1001-0505.2006.06.019]

备注/Memo

备注/Memo:
收稿日期: 2018-07-02.
作者简介: 蔡海峰(1993—),硕士生;熊源泉(联系人),男,博士,教授,博士生导师,yqxiong@seu.edu.cn.
基金项目: “十二五”国家科技支撑计划资助项目(2014BAA05B01).
引用本文: 蔡海峰,熊源泉,周海军.水平弯管高压密相气力输送数值模拟[J].东南大学学报(自然科学版),2019,49(1):154-163. DOI:10.3969/j.issn.1001-0505.2019.01.022.
更新日期/Last Update: 2019-01-20