[1]谌伊竺,邵应娟,钟文琪.煤颗粒固定床加压富氧燃烧特性及污染物生成试验研究[J].东南大学学报(自然科学版),2019,49(1):164-170.[doi:10.3969/j.issn.1001-0505.2019.01.023]
 Chen Yizhu,Shao Yingjuan,Zhong Wenqi.Combustion characteristics and formations of pollutants of coal particles in pressurized oxy-fuel fixed bed combustion[J].Journal of Southeast University (Natural Science Edition),2019,49(1):164-170.[doi:10.3969/j.issn.1001-0505.2019.01.023]
点击复制

煤颗粒固定床加压富氧燃烧特性及污染物生成试验研究()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
49
期数:
2019年第1期
页码:
164-170
栏目:
能源与动力工程
出版日期:
2019-01-20

文章信息/Info

Title:
Combustion characteristics and formations of pollutants of coal particles in pressurized oxy-fuel fixed bed combustion
作者:
谌伊竺邵应娟钟文琪
东南大学能源热转换及其过程测控教育部重点实验室, 南京 210096
Author(s):
Chen Yizhu Shao Yingjuan Zhong Wenqi
Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, Southeast University, Nanjing 210096, China
关键词:
煤燃烧 加压富氧燃烧 燃烧特性 污染物 加压管式炉
Keywords:
coal combustion pressurized oxy-fuel combustion combustion characteristics pollutants pressurized tube furnace
分类号:
TK16
DOI:
10.3969/j.issn.1001-0505.2019.01.023
摘要:
为研究煤加压富氧燃烧及其污染物生成特性,建立了加压水平管式炉富氧燃烧实验系统.以山西浑源烟煤为实验原料,探究了不同燃烧压力(0.1~0.9 MPa)和不同气氛(空气以及O2浓度分别为21%,26%,31%,36%,41%的O2/CO2气氛)对煤加压富氧燃烧过程的燃烧特性以及污染物生成的影响.结果显示,与空气燃烧相比,O2/CO2气氛下煤燃烧时间增加;随着O2浓度的增加,煤燃烧时间缩短;升高反应压力,煤燃烧速率增大且增幅逐渐减小;随着反应压力的提高NOx生成量逐渐减少,O2/CO2气氛下NOx生成量小于空气气氛下NOx生成量,随着O2浓度增加,NOx生成量增加;压力升高导致SO2生成量明显减少,O2/CO2气氛下SO2生成量小于空气气氛下SO2生成量,SO2生成量随着O2浓度增加而增多.
Abstract:
To investigate the combustion characteristics and the pollutant emission characteristics of coal in pressurized oxy-fuel combustion, an experimental system with pressurized horizontal tube furnace oxy-fuel combustion was established, using Shanxi Hunyuan bituminous coal as an experimental material. This paper discussed effects of different combustion pressures(0.1 to 0.9 MPa)and different atmospheres(air and O2/CO2 atmospheres with O2 concentrations of 21%, 26%, 31%, 36%, and 41%)on the combustion characteristics and the pollutant emission characteristics of pressurized oxy-fuel combustion processes. The results show that compared with the air combustion, the coal combustion time in O2/CO2 atmosphere increases. As the concentration of O2 rises, the coal combustion time is shorter. With higher reaction pressure, the coal burning rate is accelerated and the enhancement gradually decreases. The amount of NOx generated gradually reduces with the increase of the reaction pressure in the O2/CO2 atmosphere, it is smaller than that in the air atmosphere. As the O2 concentration increases, the generation of NOx is also increased. The increment in the reaction pressure leads to an obvious decrease in the amount of SO2 produced. In the O2/CO2 atmosphere, the production of SO2 is less than that in the air atmosphere and increases with the increasing O2 concentration.

参考文献/References:

[1] Mathekga H I, Oboirien B O, North B C. A review of oxy-fuel combustion in fluidized bed reactors[J]. International Journal of Energy Research, 2016, 40(7): 878-902. DOI:10.1002/er.3486.
[2] Guo J J, Liu Z H, Huang X H, et al. Experimental and numerical investigations on oxy-coal combustion in a 35 MW large pilot boiler[J]. Fuel, 2017, 187: 315-327. DOI:10.1016/j.fuel.2016.09.070.
[3] Fogarasi S, Cormos C C. Assessment of coal and sawdust co-firing power generation under oxy-combustion conditions with carbon capture and storage[J]. Journal of Cleaner Production, 2017, 142: 3527-3535. DOI:10.1016/j.jclepro.2016.10.115.
[4] Bhunia S, Sadhukhan A K, Gupta P. Modelling and experimental studies on oxy-fuel combustion of coarse size coal char[J]. Fuel Processing Technology, 2017, 158: 73-84. DOI:10.1016/j.fuproc.2016.11.015.
[5] Ilbas M, Bektas A, Karyeyen S. Effect of oxy-fuel combustion on flame characteristics of low calorific value coal gases in a small burner and combustor[J]. Fuel, 2018, 226: 350-364. DOI:10.1016/j.fuel.2018.04.023.
[6] Wu F, Argyle M D, Dellenback P A, et al. Progress in O2 separation for oxy-fuel combustion—A promising way for cost-effective CO2 capture: A review[J]. Progress in Energy and Combustion Science, 2018, 67: 188-205. DOI:10.1016/j.pecs.2018.01.004.
[7] Nemitallah M A, Habib M A, Badr H M, et al. Oxy-fuel combustion technology: Current status, applications, and trends[J]. International Journal of Energy Research, 2017, 41(12): 1670-1708. DOI:10.1002/er.3722.
[8] Hong J,Chaudhry G, Brisson J G, et al. Analysis of oxy-fuel combustion power cycle utilizing a pressurized coal combustor[J]. Energy, 2009, 34(9): 1332-1340.DOI:10.1016/j.energy.2009.05.015.
[9] Hong J. Techno-economic analysis of pressurized oxy-fuel combustion power cycle for CO2 capture[D]. Massachusetts,USA:Massachusetts Institute of Technology, 2009.
[10] Soundararajan R, Gundersen T. Coal based power plants using oxy-combustion for CO2 capture: Pressurized coal combustion to reduce capture penalty[J]. Applied Thermal Engineering, 2013, 61(1): 115-122. DOI:10.1016/j.applthermaleng.2013.04.010.
[11] 王卓雅,赵跃民,高淑玲. 论中国燃煤污染及其防治[J]. 煤炭技术, 2004,23(7): 4-6. DOI:10.3969/j.issn.1008-8725.2004.07.002.
Wang Z Y, Zhao Y M, Gao S L. Discussion on coal-smoke pollution and its prevention[J].Coal Technology, 2004,23(7): 4-6. DOI:10.3969/j.issn.1008-8725.2004.07.002. (in Chinese)
[12] Lei M, Huang X Z, Wang C B, et al. Investigation on SO2, NO and NO2 release characteristics of Datong bituminous coal during pressurized oxy-fuel combustion[J]. Journal of Thermal Analysis and Calorimetry, 2016, 126(3): 1067-1075. DOI:10.1007/s10973-016-5652-y.
[13] 雷鸣,王春波,阎维平,等. 增压富氧鼓泡床的NO生成特性[J]. 燃烧科学与技术, 2014,20(5): 377-382. DIO:10.11715/rskxjs.R201311032.
  Lei M, Wang C B, Yan W P, et al. NO emission characteristics of pressurized oxy-fuel bubbling fluidized bed[J]. Journal of Combustion Science and Technology, 2014, 20(5):377-382. DIO:10.11715/rskxjs.R201311032.(in Chinese)
[14] Lasek J A, Gód K, Janusz M, et al. Pressurized oxy-fuel combustion: A study of selected parameters[J]. Energy & Fuels, 2012, 26(11): 6492-6500. DOI:10.1021/ef201677f.
[15] Lasek J A, Janusz M, Zuwaa J, et al. Oxy-fuel combustion of selected solid fuels under atmospheric and elevated pressures[J]. Energy, 2013, 62: 105-112. DOI:10.1016/j.energy.2013.04.079.
[16] Duan Y Q, Duan L B, Hu H H, et al. Combustion and pollutant emission characteristics of coal in a pressurized fluidized bed under O2/CO2 atmosphere[J]. Journal of Southeast University(English Edition), 2015,31(2): 188-193.
[17] Liu H,Zailani R, Gibbs B M. Comparisons of pulverized coal combustion in air and in mixtures of O2/CO2[J]. Fuel, 2005, 84(7/8): 833-840. DOI:10.1016/j.fuel.2004.11.018.
[18] Ying Z, Zheng X Y, Cui G M. Pressurized oxy-fuel combustion performance of pulverized coal for CO2 capture[J]. Applied Thermal Engineering, 2016, 99: 411-418. DOI:10.1016/j.applthermaleng.2016.01.023.
[19] Wang C B, Lei M, Yan W P, et al. Combustion characteristics and ash formation of pulverized coal under pressurized oxy-fuel conditions[J]. Energy & Fuels, 2011, 25(10): 4333-4344. DOI:10.1021/ef200956q.
[20] 刘倩,钟文琪,苏伟,等. 基于热重-质谱联用的煤粉富氧燃烧动力学及污染物生成特性[J]. 化工学报, 2018,69(1): 523-530.
  Liu Q, Zhong W Q, Su W, et al. Oxy-coal combustion kinetics and formation characteristics of pollutants based on TG-MS analysis[J]. CIESC Journal, 2018,69(1): 523-530.(in Chinese)
[21] 车得福. 煤氮热变迁与氮氧化物生成[M]. 西安:西安交通大学出版社, 2013:14-18.
[22] 李相鹏,张世红,廖新杰,等. CFB富氧燃烧中CO2对煤焦与NO还原作用的影响[J]. 工程热物理学报. 2016,37(12): 2703-2709.
  Li X P, Zhang S H, Liao X J, et al. Effect of CO2 on coal char-NO reduction process in CFB oxy-fuel combustion[J]. Journal of Engineering Thermophysics, 2016,37(12): 2703-2709.(in Chinese)
[23] Zhou H, Li Y, Li N, et al. Conversions of fuel-N to NO and N2O during devolatilization and char combustion stages of a single coal particle under oxy-fuel fluidized bed conditions[J]. Journal of the Energy Institute, 2018:1-13. DOI:10.1016/j.joei.2018.01.001.
[24] 王春波,岳爽,许旭斌,等. O2/CO2气氛下煤焦恒温燃烧NOx释放特性[J]. 煤炭学报, 2018, 43(1): 257-264. DOI:10.13225/j.cnki.jccs.2017.4205.
Wang C B, Yue S, Xu X B, et al. NOx release of char in constant temperature combustion under O2/CO2 atmosphere[J].Journal of China Coal Society, 2018, 43(1): 257-264. DOI:10.13225/j.cnki.jccs.2017.4205. (in Chinese)
[25] García-Labiano F, Hampartsoumian E, Williams A. Determination of sulfur release and its kinetics in rapid pyrolysis of coal[J]. Fuel, 1995, 74(7): 1072-1079. DOI:10.1016/0016-2361(95)00049-b.
[26] Duan Y Q, Duan L B, Anthony E J, et al. Nitrogen and sulfur conversion during pressurized pyrolysis under CO2 atmosphere in fluidized bed[J]. Fuel, 2017, 189: 98-106. DOI:10.1016/j.fuel.2016.10.080.
[27] 雷鸣,吕凯文,王春波,等. 大同烟煤增压富氧燃烧过程中硫、氯和氟的析出特性[J]. 燃料化学学报, 2014,42(9): 1053-1059. DOI:10.3969/j.issn.0253-2409.2014.09.005.
Lei M, Lü K W, Wang C B, et al. Investigation on sulfur,chlorine and fluorine releasing characteristics during pressurized oxy-fuel combustion of Datong bituminous coal[J].Journal of Fuel Chemistry and Technology, 2014,42(9): 1053-1059. DOI:10.3969/j.issn.0253-2409.2014.09.005. (in Chinese)
[28] Chamberlain S, Reeder T, Stimpson C K, et al. A comparison of sulfur and chlorine gas species in pulverized-coal, air- and oxy-combustion[J]. Combustion and Flame, 2013, 160(11): 2529-2539. DOI:10.1016/j.combustflame.2013.05.008.
[29] Wang X B, Adeosun A, Yablonsky G, et al. Synergistic SOx/NOx chemistry leading to enhanced SO3 and NO2 formation during pressurized oxy-combustion[J]. Reaction Kinetics, Mechanisms and Catalysis, 2018, 123(2): 313-322. DOI:10.1007/s11144-017-1327-3.
[30] 董学文, 王宏, 刘豪,等. 不同气氛下燃煤SO2的排放规律研究[J]. 环境科学学报, 2003, 23(3):322-326. DOI:10.3321/j.issn:0253-2468.2003.03.007.
Dong X W, Wang H, Liu H, et al. Study on SO2 emission under various atmospheres during coal combustion[J]. Acta Scientiae Circumstantiae,2003,23(3):322-326. DOI:10.3321/j.issn:0253-2468.2003.03.007. (in Chinese)
[31] Zheng Z,Wang H, Li Y, et al. Comparative study on SO2 release and removal under air and oxy-fuel combustion in a fluidized bed combustor[J]. Journal of Southeast University(English Edition), 2015, 31(2): 232-237.DOI:10.3969/j.issn:1003-7985.2015.02.013.

备注/Memo

备注/Memo:
收稿日期: 2018-08-02.
作者简介: 谌伊竺(1994—),女,硕士生;邵应娟(联系人),女,博士,副教授,博士生导师,yjshao@seu.edu.cn.
基金项目: 国家重点研发计划资助项目(2016YFB0600802)、国家自然科学基金重点资助项目(51736002).
引用本文: 谌伊竺,邵应娟,钟文琪.煤颗粒固定床加压富氧燃烧特性及污染物生成试验研究[J].东南大学学报(自然科学版),2019,49(1):164-170. DOI:10.3969/j.issn.1001-0505.2019.01.023.
更新日期/Last Update: 2019-01-20