[1]肖君,黄娟,彭程,等.人工湿地土壤酶活性对纳米银颗粒的动态响应[J].东南大学学报(自然科学版),2019,49(1):178-185.[doi:10.3969/j.issn.1001-0505.2019.01.025]
 Xiao Jun,Huang Juan,Peng Cheng,et al.Dynamic responses of enzyme activity to silver nanoparticles in rhizosphere soil of constructed wetland[J].Journal of Southeast University (Natural Science Edition),2019,49(1):178-185.[doi:10.3969/j.issn.1001-0505.2019.01.025]
点击复制

人工湿地土壤酶活性对纳米银颗粒的动态响应()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
49
期数:
2019年第1期
页码:
178-185
栏目:
环境科学与工程
出版日期:
2019-01-20

文章信息/Info

Title:
Dynamic responses of enzyme activity to silver nanoparticles in rhizosphere soil of constructed wetland
作者:
肖君黄娟彭程曹冲闫春妮
东南大学土木工程学院, 南京 211189
Author(s):
Xiao Jun Huang Juan Peng Cheng Cao Chong Yan Chunni
School of Civil Engineering, Southeast University, Nanjing 211189, China
关键词:
纳米银(AgNPs) 土壤酶活性 人工湿地 动态响应
Keywords:
silver nanoparticles(AgNPs) soil enzyme activity constructed wetlands dynamic responses
分类号:
X503.23
DOI:
10.3969/j.issn.1001-0505.2019.01.025
摘要:
为分析纳米银颗粒(AgNPs)暴露对人工湿地的负面效应,选取几种典型土壤酶(脱氢酶、脲酶、中性磷酸酶、β-葡萄糖苷酶、芳基硫酸酯酶)分别探究不同浓度(0,50,100,200 μg/L)AgNPs对土壤酶活性的影响.结果显示:AgNPs暴露下,土壤脱氢酶活性受抑制程度最明显且具有浓度效应,浓度为200 μg/L 的AgNPs对脱氢酶造成长期抑制;脲酶、中性磷酸酶受抑制程度较低,AgNPs暴露时间的增加使酶活性逐渐恢复至对照组水平;中低浓度(50,100 μg/L)AgNPs对β-葡萄糖苷酶、芳基硫酸酯酶的影响程度不大,但高浓度(200 μg/L)AgNPs的长期作用会使β-葡萄糖苷酶、芳基硫酸酯酶活性受到一定程度的抑制.整体而言,人工湿地不同土壤酶对AgNPs的响应不同,且随着接触时间延长,AgNPs对土壤酶的负面效应逐渐减弱.
Abstract:
To study the negative effects of silver nanoparticles(AgNPs)exposure on constructed wetland, several typical soil enzymes, such as dehydrogenase, urease, neutral phosphatase, β-glucosidase, and arylsulfatase, were selected. The effects of AgNPs on soil enzyme activity were investigated on different concentrations(0, 50, 100 and 200 μg/L). The results indicate that, the inhibition on dehydrogenase activity is most obvious and exhibits a concentration effect on the exposure of AgNPs, and 200 μg/L AgNPs can cause a long-term inhibition of dehydrogenase. The inhibition on urease and neutral phosphatase is relatively low, and the increase of AgNPs exposure time makes the enzyme activity gradually recover to the control level. The lower concentration(50 and 100 μg/L)AgNPs has little effect on the β-glucosidase and arylsulfatase, but the long-term effect of high concentration(200 μg/L)AgNPs inhibits the enzyme activity to a certain extent. On the whole, different soil enzymes in constructed wetland have different behaviors in response to AgNPs, and with the extension of contact time, the negative effects of AgNPs on enzyme activity will gradually decrease.

参考文献/References:

[1] Contreras J E, Rodriguez E A, Taha-Tijerina J. Nanotechnology applications for electrical transformers: A review[J]. Electric Power Systems Research, 2017, 143: 573-584. DOI:10.1016/j.epsr.2016.10.058.
[2] Chan K H, Lee W H,Zhuo S M, et al. Harnessing supramolecular peptide nanotechnology in biomedical applications[J]. International Journal of Nanomedicine, 2017, 12: 1171-1182. DOI:10.2147/ijn.s126154.
[3] Peng B L, Tang J T, Luo J H, et al. Applications of nanotechnology in oil and gas industry: Progress and perspective[J]. The Canadian Journal of Chemical Engineering, 2018, 96(1): 91-100. DOI:10.1002/cjce.23042.
[4] Hussein A K. Applications of nanotechnology in renewable energies: A comprehensive overview and understanding[J]. Renewable and Sustainable Energy Reviews, 2015, 42: 460-476. DOI:10.1016/j.rser.2014.10.027.
[5] Arif T, Nisa N, Amin S S,et al. Therapeutic and diagnostic applications of nanotechnology in dermatology and cosmetics[J]. Journal of Nanomedicine & Biotherapeutic Discovery, 2015, 5(3): 1000134. DOI:10.4172/2155-983x.1000134.
[6] Nowack B, Krug H F, Height M. 120 years of nanosilver history: Implications for policy makers[J]. Environmental Science & Technology, 2011, 45(4): 1177-1183. DOI:10.1021/es103316q.
[7] Vance M E, Kuiken T, Vejerano E P, et al. Nanotechnology in the real world: Redeveloping the nanomaterial consumer products inventory[J]. Beilstein Journal of Nanotechnology, 2015, 6: 1769-1780. DOI:10.3762/bjnano.6.181.
[8] Liu Y, Tourbin M, Lachaize S, et al. Nanoparticles in wastewaters: Hazards, fate and remediation[J]. Powder Technology, 2014, 255: 149-156. DOI:10.1016/j.powtec.2013.08.025.
[9] del Real Pradas A E, Castillo-Michel H, Kaegi R, et al. Fate of Ag-NPs in sewage sludge after application on agricultural soils[J]. Environmental Science & Technology, 2016, 50(4): 1759-1768. DOI:10.1021/acs.est.5b04550.
[10] Sanderson P, Delgado-Saborit J M, Harrison R M. A review of chemical and physical characterisation of atmospheric metallic nanoparticles[J]. Atmospheric Environment, 2014, 94: 353-365. DOI:10.1016/j.atmosenv.2014.05.023.
[11] Huang J, Cao C, Yan C N, et al. Impacts of silver nanoparticles on the nutrient removal and functional bacterial community in vertical subsurface flow constructed wetlands[J]. Bioresource Technology, 2017, 243: 1216-1226. DOI:10.1016/j.biortech.2017.07.178.
[12] Colman B P, Arnaout C L, Anciaux S, et al. Low concentrations of silver nanoparticles in biosolids cause adverse ecosystem responses under realistic field scenario[J]. PLoS One, 2013, 8(2): e57189. DOI:10.1371/journal.pone.0057189.
[13] Shin Y J, Kwak J I, An Y J. Evidence for the inhibitory effects of silver nanoparticles on the activities of soil exoenzymes[J]. Chemosphere, 2012, 88(4): 524-529. DOI:10.1016/j.chemosphere.2012.03.010.
[14] Peyrot C, Wilkinson K J, Desrosiers M, et al. Effects of silver nanoparticles on soil enzyme activities with and without added organic matter[J]. Environmental Toxicology and Chemistry, 2014, 33(1): 115-125. DOI:10.1002/etc.2398.
[15] 林先贵. 土壤微生物研究原理与方法[M]. 北京:高等教育出版社, 2010:243-246.
[16] Aon M A, Colaneri A C. Ⅱ. Temporal and spatial evolution of enzymatic activities and physico-chemical properties in an agricultural soil[J]. Applied Soil Ecology, 2001, 18(3): 255-270. DOI:10.1016/S0929-1393(01)00161-5.
[17] Alkorta I, Aizpurua A, Riga P, et al. Soil enzyme activities as biological indicators of soil health[J]. Reviews on Environmental Health, 2003, 18(1): 65-73. DOI:10.1515/reveh.2003.18.1.65.
[18] Rogers J E, Li S W. Effect of metals and other inorganic ions on soil microbial activity: Soil dehydrogenase assay as a simple toxicity test[J]. Bulletin of Environmental Contamination and Toxicology, 1985, 34(1): 858-865. DOI:10.1007/bf01609817.
[19] Zhang C B, Wang J, Liu W L, et al. Effects of plant diversity on nutrient retention and enzyme activities in a full-scale constructed wetland[J]. Bioresource Technology, 2010, 101(6): 1686-1692. DOI:10.1016/j.biortech.2009.10.001.
[20] Bruins M R, Kapil S, Oehme F W. Microbial resistance to metals in the environment[J]. Ecotoxicology and Environmental Safety, 2000, 45(3): 198-207. DOI:10.1006/eesa.1999.1860.
[21] Fingler S, Stipievi S, Drevenkar V. Sorption behaviour of chlorophenols and triazine herbicides in reference euro-soils[J]. International Journal of Environmental Analytical Chemistry, 2004, 84(1/2/3): 89-93. DOI:10.1080/0306731031000149723.
[22] 王秋双, 戚兴超, 申天琳, 等. 纳米银与石墨烯对土壤微生物及土壤酶的影响[J]. 环境科学学报, 2017, 37(8): 3149-3157. DOI:10.13671/j.hjkxxb.2017.0013.
Wang Q S, Qi X C, Shen T L, et al. Effect of silver nanoparticles and graphene on soil microorganisms and enzyme activities[J]. Acta Scientiae Circumstantiae, 2017, 37(8): 3149-3157. DOI:10.13671/j.hjkxxb.2017.0013. (in Chinese)
[23] Bremner J M, Douglas L A. Inhibition of urease activity in soils[J]. Soil Biology and Biochemistry, 1971, 3(4): 297-307. DOI:10.1016/0038-0717(71)90039-3.
[24] Yue C, Chang J, Ge Y J H, et al. Phosphatase and urease activities in constructed wetland and their relationship with purification of wastewater[J]. Fresenius Environmental Bulletin, 2008, 17(8a):992-996.
[25] Renella G, Mench M, van der Lelie D, et al. Hydrolase activity, microbial biomass and community structure in Long-term Cd-contaminated soils[J]. Soil Biology and Biochemistry, 2004, 36(3): 443-451. DOI:10.1016/j.soilbio.2003.10.022.
[26] Warman P R, Munroe M D. The effects of high metal concentrations in soil-compost mixtures on soil enzymes[J]. Journal of Environmental Science and Health, Part B, 2010, 45(7): 633-638. DOI:10.1080/03601234.2010.502421.
[27] 和文祥, 朱铭莪, 张一平. 土壤酶与重金属关系的研究现状[J]. 土壤与环境, 2000, 9(2): 139-142.DOI:10.3969/j.issn1674-5906.2000.02.015.
He W X, Zhu M G, Zhang Y P. Recent advance in relationship between soil enzymes and heavy metals[J]. Soil and Environmental Sciences, 2000, 9(2): 139-142.DOI:10.3969/j.issn1674-5906.2000.02.015. (in Chinese)
[28] Sinsabaugh R L, Antibus R K, Linkins A E, et al. Wood decomposition: Nitrogen and phosphorus dynamics in relation to extracellular enzyme activity[J]. Ecology, 1993, 74(5): 1586-1593. DOI:10.2307/1940086.
[29] Baddam R, Reddy G B, Raczkowski C, et al. Activity of soil enzymes in constructed wetlands treated with swine wastewater[J]. Ecological Engineering, 2016, 91: 24-30. DOI:10.1016/j.ecoleng.2016.01.021.
[30] Eivazi F, Tabatabai M A. Glucosidases and galactosidases in soils[J]. Soil Biology and Biochemistry, 1988, 20(5): 601-606. DOI:10.1016/0038-0717(88)90141-1.
[31] Deng S P, Tabatabai M A. Colorimetric determination of reducing sugars in soils[J]. Soil Biology and Biochemistry, 1994, 26(4): 473-477. DOI:10.1016/0038-0717(94)90179-1.
[32] Choi J H, Kang H, Park S S. Comparison of enzyme activities in vegetated and nonvegetated sediments[J]. Journal of Environmental Engineering, 2009, 135(5): 299-305. DOI:10.1061/(asce)ee.1943-7870.0000015.
[33] Li B T, Chen Y R, Liang W Z, et al. Influence of cerium oxide nanoparticles on the soil enzyme activities in a soil-grass microcosm system[J]. Geoderma, 2017, 299: 54-62. DOI:10.1016/j.geoderma.2017.03.027.
[34] Kang H, Freeman C, Lee D, et al. Enzyme activities in constructed wetlands: Implication for water quality amelioration[J]. Hydrobiologia, 1998, 368(1): 231-235.
[35] Tabatabai M A, Bremner J M. Factors affecting soil arylsulfatase activity[J]. Soil Science Society of America Journal, 1970, 34(3): 427. DOI:10.2136/sssaj1970.03615995003400030023x.
[36] Kandeler E, Tscherko D, Bruce K D, et al. Structure and function of the soil microbial community in microhabitats of a heavy metal polluted soil[J]. Biology and Fertility of Soils, 2000, 32(5): 390-400. DOI:10.1007/s003740000268.
[37] Angeloni N L, Jankowski K J, Tuchman N C, et al. Effects of an invasive cattail species(Typha�0;0;0;C3;×glauca)on sediment nitrogen and microbial community composition in a freshwater wetland[J]. FEMS Microbiology Letters, 2006, 263(1): 86-92. DOI:10.1111/j.1574-6968.2006.00409.x.
[38] Ravit B, Ehenfeld J G, H�0;0;0;E4;ggblom M M. Effects of vegetation on root-associated microbial communities: A comparison of disturbed versus undisturbed estuarine sediments[J]. Soil Biology and Biochemistry, 2006, 38(8): 2359-2371. DOI:10.1016/j.soilbio.2006.02.012.
[39] Shackle V J, Freeman C, Reynolds B. Carbon supply and the regulation of enzyme activity in constructed wetlands[J]. Soil Biology and Biochemistry, 2000, 32(13): 1935-1940. DOI:10.1016/S0038-0717(00)00169-3.
[40] Singh D K, Kumar S. Nitrate reductase, arginine deaminase, urease and dehydrogenase activities in natural soil(ridges with forest)and in cotton soil after acetamiprid treatments[J]. Chemosphere, 2008, 71(3): 412-418. DOI:10.1016/j.chemosphere.2007.11.005.
[41] Coutris C, Joner E J. Exposure and toxicity of metal and oxide nanoparticles to earthworms[M]// Encyclopedia of Nanotechnology. Dordrecht: Springer Netherlands, 2016: 1146-1152. DOI:10.1007/978-94-017-9780-1_183.
[42] Lowry G V, Gregory K B, Apte S C, et al. Transformations of nanomaterials in the environment[J]. Environmental Science & Technology, 2012, 46(13): 6893-6899. DOI:10.1021/es300839e.
[43] Allison S D, Martiny J B H. Resistance, resilience, and redundancy in microbial communities[J]. Proceedings of the National Academy of Sciences, 2008, 105(supp): 11512-11519. DOI:10.1073/pnas.0801925105.
[44] Dinesh R, Anandaraj M, Srinivasan V, et al. Engineered nanoparticles in the soil and their potential implications to microbial activity[J]. Geoderma, 2012, 173-174: 19-27. DOI:10.1016/j.geoderma.2011.12.018.
[45] Meyer A F, Lipson D A, Martin A P, et al. Molecular and metabolic characterization of cold-tolerant alpine soil pseudomonas sensu stricto[J]. Applied and Environmental Microbiology, 2004, 70(1): 483-489. DOI:10.1128/aem.70.1.483-489.2004.

备注/Memo

备注/Memo:
收稿日期: 2018-06-22.
作者简介: 肖君(1992—),女,博士生; 黄娟(联系人),女,博士,副教授,博士生导师,seu070303@163.com.
基金项目: 国家自然科学基金资助项目(51479034;50909019)、中央高校基本科研业务费专项资金资助项目(2242016R30008).
引用本文: 肖君,黄娟,彭程,等.人工湿地土壤酶活性对纳米银颗粒的动态响应[J].东南大学学报(自然科学版),2019,49(1):178-185. DOI:10.3969/j.issn.1001-0505.2019.01.025.
更新日期/Last Update: 2019-01-20