[1]宋晓勤,谈雅竹,董莉,等.基于拟牛顿内点法的认知车联网能效优先资源分配算法[J].东南大学学报(自然科学版),2019,49(2):213-218.[doi:10.3969/j.issn.1001-0505.2019.02.002]
 Song Xiaoqin,Tan Yazhu,Dong Li,et al.Resource allocation algorithm with energy efficiency priority based on quasi-Newton interior point method in cognitive internet of vehicles[J].Journal of Southeast University (Natural Science Edition),2019,49(2):213-218.[doi:10.3969/j.issn.1001-0505.2019.02.002]
点击复制

基于拟牛顿内点法的认知车联网能效优先资源分配算法()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
49
期数:
2019年第2期
页码:
213-218
栏目:
信息与通信工程
出版日期:
2019-03-20

文章信息/Info

Title:
Resource allocation algorithm with energy efficiency priority based on quasi-Newton interior point method in cognitive internet of vehicles
作者:
宋晓勤1谈雅竹1董莉2王健康3胡静4宋铁成4
1 南京航空航天大学电子信息工程学院, 南京 211106; 2 中国科学院电子学研究所苏州研究院, 苏州 215000; 3中国三星研究院, 北京 100028; 4 东南大学信息科学与工程学院, 南京 210096
Author(s):
Song Xiaoqin1 Tan Yazhu1 Dong Li2 Wang Jiankang3 Hu Jin4 Song Tiecheng4
1 College of Electronic and Information Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
2 Suzhou Institute, Institute of Electronics, Chinese Academy of Sciences, Suzhou 215000, China
3 China Samsung Research Institute, Beijing 100028, China
4 School of Information Science and Engineering, Southeast University, Nanjing 210096, China
关键词:
认知车联网 能量效率 实时性 拟牛顿内点法
Keywords:
cognitive internet of vehicles energy efficiency real time quasi-Newton interior point method
分类号:
TN911.22
DOI:
10.3969/j.issn.1001-0505.2019.02.002
摘要:
为了提高认知车联网中多用户资源分配的能效及实时性,提出了一种在信道状态信息不理想情况下最大化系统能效的资源分配算法. 联合考虑额定系统传输功率、主用户干扰阈值、最低通信速率以及用户间比例公平性等约束条件,将主用户的干扰约束条件转换成概率型约束条件.然后,采用Bernstein近似的方法处理该概率型约束,通过设置公平门限来解决用户间的比例公平性问题.最后,分别采用高、低复杂度的子载波分配算法,配合拟牛顿内点法进行功率分配.仿真结果表明,所提算法的能效约为最优解上界的93%,既能满足系统能效要求,又降低了计算复杂度,适用于对实时性要求较高的车联网系统.
Abstract:
To improve the energy efficiency and real-time performance of multi-user resource allocation(RA)in cognitive internet of vehicles(IoV), a resource allocation algorithm maximizing system energy efficiency was proposed with imperfect channel state information(CSI). Considering the constraints of the transmission power budget, the primary users’ interference thresholds, the minimum communication rate and the proportional fairness among users, the interference constraints of the primary users were transformed into the probabilistic constraints. Then, the Bernstein approximation was used to deal with the probabilistic constraints and the proportional fairness among users was solved by setting the fair threshold. Finally, high and low complexity subcarrier allocation algorithms were used respectively, and combining with the quasi-Newton interior point method, a power allocation was carried out. The simulation results show that the energy efficiency of the proposed algorithm is about 93% of the upper bound of the optimal solution, which can meet the energy efficiency requirement of the system and reduce the computational complexity. It is suitable for the IoV with high real-time requirements.

参考文献/References:

[1] Paul A, Daniel A, Ahmad A, et al. Cooperative cognitive intelligence for internet of vehicles[J].IEEE Systems Journal, 2017, 11(3): 1249-1258. DOI:10.1109/jsyst.2015.2411856.
[2] Chen C Y, Huang C S, Chen J Y. ACRA: Adaptive clustering resource allocation for vehicle to vehicle communications[C]//Tenth International Conference on Mobile Computing & Ubiquitous Network(ICMU). Toyama, Japan, 2018:1-5. DOI: 10.23919/ICMU.2017.8330101.
[3] Shao H, Jing W P, Wen X M, et al. Joint optimization of quality of experience and power consumption in OFDMA multicell networks[J]. IEEE Communications Letters, 2016, 20(2): 380-383. DOI:10.1109/lcomm.2015.2508924.
[4] Zeng F Z, Liu C, Xu J S. Fairness-aware resource allocation in OFDM-based cognitive radio networks for energy efficiency[C]//2016 12th International Conference on Natural Computation, Fuzzy Systems and Knowledge Discovery(ICNC-FSKD). Changsha, China, 2016: 642-646. DOI:10.1109/FSKD.2016.7603249.
[5] Wang S W, Huang F J, Wang C G. Adaptive proportional fairness resource allocation for OFDM-based cognitive radio networks[J].Wireless Networks, 2013, 19(3): 273-284. DOI:10.1007/s11276-012-0465-9.
[6] Zhao Q, Sadler B M. A survey of dynamic spectrum access[J].IEEE Signal Processing Magazine, 2007, 24(3): 79-89. DOI:10.1109/msp.2007.361604.
[7] Weiss T, Hillenbrand J,Krohn A, et al. Mutual interference in OFDM-based spectrum pooling systems[C]//2004 IEEE 59th Vehicular Technology Conference. Milan, Italy, 2004: 1873-1877. DOI:10.1109/VETECS.2004.1390598.
[8] Chua S G, Goldsmith A. Variable-rate variable-power MQAM for fading channels[C]//Proceedings of Vehicular Technology Conference.Atlanta, GA, USA, 1996: 815-819. DOI:10.1109/VETEC.1996.501424.
[9] Soltani N Y, Kim S J, Giannakis G B. Chance-constrained optimization of OFDMA cognitive radio uplinks[J]. IEEE Transactions on Wireless Communications, 2013, 12(3): 1098-1107. DOI:10.1109/twc.2013.011713.120155.
[10] Shen Z K, Andrews J G, Evans B L. Adaptive resource allocation in multiuser OFDM systems with proportional rate constraints[J]. IEEE Transactions on Wireless Communications, 2005, 4(6): 2726-2737. DOI:10.1109/twc.2005.858010.
[11] Wang S W, Shi W J, Wang C G. Energy-efficient resource management in OFDM-based cognitive radio networks under channel uncertainty[J].IEEE Transactions on Communications, 2015, 63(9): 3092-3102. DOI:10.1109/tcomm.2015.2452251.
[12] Nocedal J. Updating quasi-newton matrices with limited storage[J]. Mathematics of Computation, 1980, 35(151): 773. DOI:10.2307/2006193.
[13] Shi W J, Wang S W. Energy-efficient resource allocation in cognitive radio systems[C]//2013 IEEE Wireless Communications and Networking Conference(WCNC). Shanghai, China, 2013: 4618-4623. DOI:10.1109/WCNC.2013.6555323.

相似文献/References:

[1]左加阔,赵力,邹采荣.时延服务质量约束下的高能效功率分配算法[J].东南大学学报(自然科学版),2015,45(4):635.[doi:10.3969/j.issn.1001-0505.2015.04.004]
 Zuo Jiakuo,Zhao Li,Zou Cairong.Energy-efficient power allocation algorithm with delay QoS constraints[J].Journal of Southeast University (Natural Science Edition),2015,45(2):635.[doi:10.3969/j.issn.1001-0505.2015.04.004]
[2]孙远,李春国,黄永明,等.云接入网络中基于能效的资源分配算法设计[J].东南大学学报(自然科学版),2018,48(5):939.[doi:10.3969/j.issn.1001-0505.2018.05.023]
 Sun Yuan,Li Chunguo,Huang Yongming,et al.Design of energy-efficient based resource allocation algorithm in cloud radio access network[J].Journal of Southeast University (Natural Science Edition),2018,48(2):939.[doi:10.3969/j.issn.1001-0505.2018.05.023]

备注/Memo

备注/Memo:
收稿日期: 2018-10-07.
作者简介: 宋晓勤(1973—),女,博士,副教授,xiaoqin.song@163.com.
基金项目: 国家自然科学基金资助项目(61771126)、南京航空航天大学研究生创新基地(实验室)开放基金资助项目(kfjj20180403).
引用本文: 宋晓勤,谈雅竹,董莉,等.基于拟牛顿内点法的认知车联网能效优先资源分配算法[J].东南大学学报(自然科学版),2019,49(2):213-218. DOI:10.3969/j.issn.1001-0505.2019.02.002.
更新日期/Last Update: 2019-03-20