[1]吴争,董育宁,田炜.基于链式结构的网络视频流分类算法[J].东南大学学报(自然科学版),2019,49(2):219-224.[doi:10.3969/j.issn.1001-0505.2019.02.003]
 Wu Zheng,Dong Yuning,Tian Wei.Internet video traffic classification algorithm based on chain structure[J].Journal of Southeast University (Natural Science Edition),2019,49(2):219-224.[doi:10.3969/j.issn.1001-0505.2019.02.003]
点击复制

基于链式结构的网络视频流分类算法()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
49
期数:
2019年第2期
页码:
219-224
栏目:
计算机科学与工程
出版日期:
2019-03-20

文章信息/Info

Title:
Internet video traffic classification algorithm based on chain structure
作者:
吴争董育宁田炜
南京邮电大学通信与信息工程学院, 南京 210003
Author(s):
Wu Zheng Dong Yuning Tian Wei
College of Telecommunications and Information Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210003, China
关键词:
网络视频流分类 QoS 集成学习 分类结构 卡方离散算法
Keywords:
network video traffic classification QoS(quality of service) ensemble learning classification structure Chi2 discretization algorithm
分类号:
TP391
DOI:
10.3969/j.issn.1001-0505.2019.02.003
摘要:
针对各类别网络流分布不平衡的问题,设计了一种能够实现低存储、低时延、高准确率的网络视频流细分类算法.首先,采用改进的卡方离散算法对数据进行离散化处理;然后,提出了一种改进线性前向特征选择算法,选出有效的QoS相关特征;最后,设计一种链式和分级结构相结合的分类结构,完成网络视频流细分类.针对真实网络采集的7种网络视频流的分类试验结果表明,所提算法的分类准确率达到96.7%,而且在数据不平衡的情况下仍具有较高的识别率.
Abstract:
As for the imbalanced distribution of each category of internet flows, an internet video traffic classification algorithm with small memory, low latency and high classification accuracy was designed. First, a modified Chi2 discretization algorithm was used to discretize data. Then, a modified linear forward selection(MLFS)method was proposed to select effective QoS(quality of service)features. Finally, a classification structure combing a chain structure with a hierarchical structure was designed to achieve fine-grained classification of internet video flows. The experimental results of the traffic classification with seven categories in real-network dataset show that the classification accuracy of the proposed algorithm is 96.7%. And the high recognition rate can keep stable for the imbalanced dataset.

参考文献/References:

[1] Cisco: Complete-white-paper-c11-481360 [EB/OL].(2018-11-26)[2018-12-1]. https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/complete-white-paper-c11-481360.html?dtid=osscdc000283#_Toc484813971.
[2] Mu X F, Wu W J. A parallelized network traffic classification based on hidden Markov model[C]//2011 International Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery.Beijing, China, 2011: 107-112. DOI:10.1109/CyberC.2011.27.
[3] Gonçalves G D, Cunha Í, Vieira A B, et al. Predicting the level of cooperation in a peer-to-peer live streaming application[J]. Multimedia Systems, 2016, 22(2): 161-180. DOI:10.1007/s00530-014-0434-5.
[4] Claypool M,Finkel D, Grant A, et al. Thin to win? Network performance analysis of the OnLive thin client game system[C]//2012 11th Annual Workshop on Network and Systems Support for Games(NetGames).Venice, Italy, 2012: 1-6. DOI:10.1109/NetGames.2012.6404013.
[5] Wang Z J, Dong Y N, Shi H X, et al. Internet video traffic classification using QoS features[C]//2016 International Conference on Computing, Networking and Communications. Kauai, HI, USA, 2016: 1-5. DOI:10.1109/ICCNC.2016.7440599.
[6] Dong Y N, Zhao J J, Jin J. Novel feature selection and classification of internet video traffic based on a hierarchical scheme[J]. Computer Networks, 2017, 119: 102-111. DOI:10.1016/j.comnet.2017.03.019.
[7] Labovitz C, Iekel-Johnson S, McPherson D, et al. Internet inter-domain traffic[J]. ACM SIGCOMM Computer Communication Review, 2010, 40(4): 75. DOI:10.1145/1851275.1851194.
[8] Kohavi R, John G H. Wrappers for feature subset selection[J]. Artificial Intelligence, 1997, 97(1/2): 273-324. DOI:10.1016/s0004-3702(97)00043-x.
[9] Onan A. A fuzzy-rough nearest neighbor classifier combined with consistency-based subset evaluation and instance selection for automated diagnosis of breast cancer[J]. Expert Systems with Applications, 2015, 42(20): 6844-6852. DOI:10.1016/j.eswa.2015.05.006.
[10] Birmingham A,Selfors L M, Forster T, et al. Statistical methods for analysis of high-throughput RNA interference screens[J]. Nature Methods, 2009, 6(8): 569-575. DOI:10.1038/nmeth.1351.
[11] Tay F E H, Shen L X. A modified Chi2 algorithm for discretization[J]. IEEE Transactions on Knowledge and Data Engineering, 2002, 14(3): 666-670. DOI:10.1109/tkde.2002.1000349.
[12] Vieira S M,Mendonça L F, Farinha G J, et al. Modified binary PSO for feature selection using SVM applied to mortality prediction of septic patients[J]. Applied Soft Computing, 2013, 13(8): 3494-3504. DOI:10.1016/j.asoc.2013.03.021.
[13] Gutlein M, Frank E, Hall M, et al. Large-scale attribute selection using wrappers[C]//2009 IEEE Symposium on Computational Intelligence and Data Mining. Nashville, TN, USA, 2009: 332-339. DOI:10.1109/CIDM.2009.4938668.
[14] Ambusaidi M A, He X J, Nanda P, et al. Building an intrusion detection system using a filter-based feature selection algorithm[J]. IEEE Transactions on Computers, 2016, 65(10): 2986-2998. DOI:10.1109/tc.2016.2519914.
[15] Gómez S E, Martínez B C, Sánchez-Esguevillas A J, et al. Ensemble network traffic classification: Algorithm comparison and novel ensemble scheme proposal[J]. Computer Networks, 2017, 127: 68-80. DOI: 10.1016/j.comnet.2017.07.018.
[16] Guo H S, Wang W J. An active learning-based SVM multi-class classification model[J]. Pattern Recognition, 2015, 48(5): 1577-1597. DOI:10.1016/j.patcog.2014.12.009.
[17] Cutler A, Cutler D R, Stevens J R. Random forests[M]//Cutler A, Cutler D R, Stevens J R,ed. Ensemble machine learning. Boston, MA, USA: Springer, 2012: 157-175. DOI:10.1007/978-1-4419-9326-7_5.
[18] Zhang P B, Yang Z X. Ensemble extreme learning machine based on a new self-adaptive AdaBoost.RT[C]// Proceedings of ELM. Cham: Springer International Publishing, 2015: 237-244. DOI:10.1007/978-3-319-14063-6_21.
[19] Sankar A, Divya Bharathi P, Midhun M, et al. A conjectural study on machine learning algorithms[C]//Proceedings of the International Conference on Soft Computing Systems. New Delhi, India: Springer, 2015: 105-116. DOI:10.1007/978-81-322-2671-0_10.
[20] Dietterich T G, Bakiri G. Solving multiclass learning problems via error-correcting output codes[J]. Journal of Artificial Intelligence Research, 1995, 2: 263-286. DOI:10.1613/jair.105.

相似文献/References:

[1]史俊财,胡爱群.基于混合业务QoS保证的WiMAX系统调度算法[J].东南大学学报(自然科学版),2008,38(3):365.[doi:10.3969/j.issn.1001-0505.2008.03.001]
 Shi Juncai,Hu Aiqun.Quality of service-based scheduling algorithm for heterogeneous services in WiMAX systems[J].Journal of Southeast University (Natural Science Edition),2008,38(2):365.[doi:10.3969/j.issn.1001-0505.2008.03.001]
[2]姜爱全.移动互联网的端到端QoS研究[J].东南大学学报(自然科学版),2004,34(2):179.[doi:10.3969/j.issn.1001-0505.2004.02.009]
 Jiang Aiquan.End-to-end quality of service research in mobile Internet[J].Journal of Southeast University (Natural Science Edition),2004,34(2):179.[doi:10.3969/j.issn.1001-0505.2004.02.009]
[3]封翔,李俨,毕光国.一种CDMA-时隙ALOHA系统及其性能分析[J].东南大学学报(自然科学版),1998,28(6):28.[doi:10.3969/j.issn.1001-0505.1998.06.006]
 Feng Xiang Li Yan Bi Guangguo,Beijing,et al.A CDMA slotted ALHOA Broadband System for Multiservices[J].Journal of Southeast University (Natural Science Edition),1998,28(2):28.[doi:10.3969/j.issn.1001-0505.1998.06.006]

备注/Memo

备注/Memo:
收稿日期: 2018-08-15.
作者简介: 吴争(1994—),男,博士生;董育宁(联系人),男,博士,教授,博士生导师,dongyn@njupt.edu.cn.
基金项目: 国家自然科学基金资助项目(61271233)、江苏省研究生培养创新工程资助项目(KYCX180894).
引用本文: 吴争,董育宁,田炜.基于链式结构的网络视频流分类算法[J].东南大学学报(自然科学版),2019,49(2):219-224. DOI:10.3969/j.issn.1001-0505.2019.02.003.
更新日期/Last Update: 2019-03-20