# [1]黄自鑫,赖旭芝,王亚午,等.二阶非完整平面3R欠驱动机械臂位置控制[J].东南大学学报(自然科学版),2019,49(2):245-250.[doi:10.3969/j.issn.1001-0505.2019.02.007] 　Huang Zixin,Lai Xuzhi,Wang Yawu,et al.Position control for planar 3R underactuated manipulator with second-order non-holonomic constraints[J].Journal of Southeast University (Natural Science Edition),2019,49(2):245-250.[doi:10.3969/j.issn.1001-0505.2019.02.007] 点击复制 二阶非完整平面3R欠驱动机械臂位置控制() 分享到： var jiathis_config = { data_track_clickback: true };

49

2019年第2期

245-250

2019-03-20

## 文章信息/Info

Title:
Position control for planar 3R underactuated manipulator with second-order non-holonomic constraints

Author(s):
School of Automation, China University of Geosciences, Wuhan 430074, China
Hubei Key Laboratory of Advanced Control and Intelligent Automation for Complex Systems, Wuhan 430074, China

Keywords:

TP24
DOI:
10.3969/j.issn.1001-0505.2019.02.007

Abstract:
A method based on trajectory planning and tracking control was proposed to solve the end-point position control problem of a planar 3R manipulator with a middle underactuated joint. According to the mathematical model of the system, the geometry relationships and the desired position, the target angles of all links were calculated by a differential evolution algorithm. Firstly, the controller designed by a Lyapunov function achieved the first and third links to the target angles. Then, according to the constraint of the system, a parametric trajectory was planned for the first link, and the suitable parameters of the trajectory were optimized by the differential evolution algorithm. After the first link tracked the trajectory, the second link was indirectly controlled to its target angle. Finally, based on the Lyapunov function, the controller was designed to make the first link track the planned trajectory and maintain the state of the third link unchanged, so that the end-point of the system is from the given initial position to the given desired position. The simulation experiments show that at 33.94 s, the end-point of the system can be stabilized to the target position(0.2, 0.8)m, and the trajectory planning and tracking control method is equally effective at different initial position and the desired position.

## 参考文献/References:

[1] 熊培银,赖旭芝,吴敏.一类二阶非完整平面欠驱动机械系统位姿控制[J].东南大学学报(自然科学版),2015,45(4):690-695.DOI:10.3969/j.issn.1001-0505.2015.04.014.
Xiong P Y,Lai X Z,Wu M.Position and attitude control for a class of planar underactuated mechanical system with second order non-holonomic constraints[J].Journal of Southeast University(Natural Science Edition),2015,45(4):690-695.DOI:10.3969/j.issn.1001-0505.2015.04.014. (in Chinese)
[2] Sun N,Fang Y C,Chen H,et al.Nonlinear stabilizing control for ship-mounted cranes with ship roll and heave movements:Design,analysis,and experiments[J].IEEE Transactions on Systems,Man,and Cybernetics:Systems,2018,48(10):1781-1793.DOI:10.1109/tsmc.2017.2700393.
[3] 孙宁,方勇纯.一类欠驱动系统的控制方法综述[J].智能系统学报,2011,6(3):200-207.DOI:10.3969/j.issn.1673-4785.2011.03.002.
Sun N,Fang Y C.A review for the control of a class of underactuated systems[J].CAAI Transactions on Intelligent Systems,2011,6(3):200-207.DOI:10.3969/j.issn.1673-4785.2011.03.002. (in Chinese)
[4] Sun N,Yang T,Chen H,et al.Adaptive anti-swing and positioning control for 4-DOF rotary cranes subject to uncertain/unknown parameters with hardware experiments[J].IEEE Transactions on Systems,Man,and Cybernetics:Systems,2017:1-13.DOI:10.1109/tsmc.2017.2765183.
[5] Liu Y,Yu H N.A survey of underactuated mechanical systems[J].IET Control Theory & Applications,2013,7(7):921-935.DOI:10.1049/iet-cta.2012.0505.
[6] Oriolo G,Nakamura Y.Control of mechanical systems with second-order nonholonomic constraints:Underactuated manipulators[C]// Proceedings of the 30th IEEE Conference on Decision and Control.Brighton,UK,1991:2398-2403.DOI:10.1109/CDC.1991.261620.
[7] Zhang P,Lai X Z,Wang Y W,et al.Effective position-posture control strategy based on switching control for planar three-link underactuated mechanical system[J].International Journal of Systems Science,2017,48(10):2202-2211.DOI:10.1080/00207721.2017.1305134.
[8] Rosas-Flors J A,Alvarez-Gallegos J,Castro-Linares R.Trajectory planning and control of an underactuated planar 2R manipulator[C]//Proceedings of the 2001 IEEE International Conference on Control Applications.Mexico City,Mexico,2001:548-552.DOI:10.1109/CCA.2001.973924.
[9] Lai X Z,She J H,Cao W H,et al.Stabilization of underactuated planar acrobot based on motion-state constraints[J].International Journal of Non-Linear Mechanics,2015,77:342-347.DOI:10.1016/j.ijnonlinmec.2015.09.006.
[10] de Luca A,Mattone R,Oriolo G.Stabilization of an underactuated planar 2R manipulator[J].International Journal of Robust and Nonlinear Control,2000,10(4):181-198.DOI:10.1002/(sici)1099-1239(20000415)10:4&lt;81::aid-rnc471&gt;3.0.co;2-x.
[11] de Luca A,Iannitti S,Mattone R,et al.Control problems in underactuated manipulators[C]//2001 IEEE/ASME International Conference on Advanced Intelligent Mechatronics. Como,Italy,2001:855-861.DOI:10.1109/AIM.2001.936778.
[12] Lai X Z,Wang Y W,Wu M,et al.Stable control strategy for planar three-link underactuated mechanical system[J].ASME Transactions on Mechatronics,2016,21(3):1345-1356.DOI:10.1109/tmech.2016.2519529.
[13] Arai H,Tanie K,Shiroma N.Nonholonomic control of a three-DOF planar underactuated manipulator[J].IEEE Transactions on Robotics and Automation,1998,14(5):681-695.DOI:10.1109/70.720345.
[14] Bhave M,Janardhanan S,Dewan L.Configuration control of planar underactuated robotic manipulator using terminal sliding mode[J].IFAC-Papers On Line,2016,49(1):148-153.DOI:10.1016/j.ifacol.2016.03.044.
[15] Storn R,Price K.Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces[J].Journal of Global Optimization,1997,11(4):341-359.DOI:10.1023/A:1008202821328.
[16] LaSalle J P.Stability theory for ordinary differentialequations[J].Journal of Differential Equations,1968,4(1):57-65.DOI:10.1016/0022-0396(68)90048-x.