[1]黄自鑫,赖旭芝,王亚午,等.二阶非完整平面3R欠驱动机械臂位置控制[J].东南大学学报(自然科学版),2019,49(2):245-250.[doi:10.3969/j.issn.1001-0505.2019.02.007]
 Huang Zixin,Lai Xuzhi,Wang Yawu,et al.Position control for planar 3R underactuated manipulator with second-order non-holonomic constraints[J].Journal of Southeast University (Natural Science Edition),2019,49(2):245-250.[doi:10.3969/j.issn.1001-0505.2019.02.007]
点击复制

二阶非完整平面3R欠驱动机械臂位置控制()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
49
期数:
2019年第2期
页码:
245-250
栏目:
自动化
出版日期:
2019-03-20

文章信息/Info

Title:
Position control for planar 3R underactuated manipulator with second-order non-holonomic constraints
作者:
黄自鑫赖旭芝王亚午吴敏
中国地质大学(武汉)自动化学院, 武汉 430074; 复杂系统先进控制与智能自动化湖北省重点实验室, 武汉 430074
Author(s):
Huang Zixin Lai Xuzhi Wang Yawu Wu Min
School of Automation, China University of Geosciences, Wuhan 430074, China
Hubei Key Laboratory of Advanced Control and Intelligent Automation for Complex Systems, Wuhan 430074, China
关键词:
平面3R欠驱动机械臂 轨迹规划 位置控制 差分进化算法
Keywords:
planar 3R underactuated manipulator trajectory planning position control differential evolution algorithm
分类号:
TP24
DOI:
10.3969/j.issn.1001-0505.2019.02.007
摘要:
为解决中间关节是欠驱动的平面3R机械臂末端点位置控制问题,提出了一种基于轨迹规划与跟踪控制方法.根据系统数学模型、几何关系和期望位置,利用差分进化算法求解所有连杆的目标角度.首先,构造Lyapunov函数设计控制器使得第一、第三连杆到达目标角度;然后,根据系统约束关系,对第一连杆进行轨迹规划,并利用差分进化算法优化轨迹参数;当第一连杆跟踪轨迹后,第二连杆被间接控制到目标角度.最后,基于Lyapunov函数设计控制器使第一连杆跟踪规划轨迹,并维持第三连杆状态不变,使系统末端点从给定初始位置到给定期望位置.仿真实验表明,在33.94 s时,系统末端点能够稳定到目标位置(0.2,0.8)m,对于不同的初始位置和期望位置,轨迹规划与跟踪控制方法同样有效.
Abstract:
A method based on trajectory planning and tracking control was proposed to solve the end-point position control problem of a planar 3R manipulator with a middle underactuated joint. According to the mathematical model of the system, the geometry relationships and the desired position, the target angles of all links were calculated by a differential evolution algorithm. Firstly, the controller designed by a Lyapunov function achieved the first and third links to the target angles. Then, according to the constraint of the system, a parametric trajectory was planned for the first link, and the suitable parameters of the trajectory were optimized by the differential evolution algorithm. After the first link tracked the trajectory, the second link was indirectly controlled to its target angle. Finally, based on the Lyapunov function, the controller was designed to make the first link track the planned trajectory and maintain the state of the third link unchanged, so that the end-point of the system is from the given initial position to the given desired position. The simulation experiments show that at 33.94 s, the end-point of the system can be stabilized to the target position(0.2, 0.8)m, and the trajectory planning and tracking control method is equally effective at different initial position and the desired position.

参考文献/References:

[1] 熊培银,赖旭芝,吴敏.一类二阶非完整平面欠驱动机械系统位姿控制[J].东南大学学报(自然科学版),2015,45(4):690-695.DOI:10.3969/j.issn.1001-0505.2015.04.014.
Xiong P Y,Lai X Z,Wu M.Position and attitude control for a class of planar underactuated mechanical system with second order non-holonomic constraints[J].Journal of Southeast University(Natural Science Edition),2015,45(4):690-695.DOI:10.3969/j.issn.1001-0505.2015.04.014. (in Chinese)
[2] Sun N,Fang Y C,Chen H,et al.Nonlinear stabilizing control for ship-mounted cranes with ship roll and heave movements:Design,analysis,and experiments[J].IEEE Transactions on Systems,Man,and Cybernetics:Systems,2018,48(10):1781-1793.DOI:10.1109/tsmc.2017.2700393.
[3] 孙宁,方勇纯.一类欠驱动系统的控制方法综述[J].智能系统学报,2011,6(3):200-207.DOI:10.3969/j.issn.1673-4785.2011.03.002.
Sun N,Fang Y C.A review for the control of a class of underactuated systems[J].CAAI Transactions on Intelligent Systems,2011,6(3):200-207.DOI:10.3969/j.issn.1673-4785.2011.03.002. (in Chinese)
[4] Sun N,Yang T,Chen H,et al.Adaptive anti-swing and positioning control for 4-DOF rotary cranes subject to uncertain/unknown parameters with hardware experiments[J].IEEE Transactions on Systems,Man,and Cybernetics:Systems,2017:1-13.DOI:10.1109/tsmc.2017.2765183.
[5] Liu Y,Yu H N.A survey of underactuated mechanical systems[J].IET Control Theory & Applications,2013,7(7):921-935.DOI:10.1049/iet-cta.2012.0505.
[6] Oriolo G,Nakamura Y.Control of mechanical systems with second-order nonholonomic constraints:Underactuated manipulators[C]// Proceedings of the 30th IEEE Conference on Decision and Control.Brighton,UK,1991:2398-2403.DOI:10.1109/CDC.1991.261620.
[7] Zhang P,Lai X Z,Wang Y W,et al.Effective position-posture control strategy based on switching control for planar three-link underactuated mechanical system[J].International Journal of Systems Science,2017,48(10):2202-2211.DOI:10.1080/00207721.2017.1305134.
[8] Rosas-Flors J A,Alvarez-Gallegos J,Castro-Linares R.Trajectory planning and control of an underactuated planar 2R manipulator[C]//Proceedings of the 2001 IEEE International Conference on Control Applications.Mexico City,Mexico,2001:548-552.DOI:10.1109/CCA.2001.973924.
[9] Lai X Z,She J H,Cao W H,et al.Stabilization of underactuated planar acrobot based on motion-state constraints[J].International Journal of Non-Linear Mechanics,2015,77:342-347.DOI:10.1016/j.ijnonlinmec.2015.09.006.
[10] de Luca A,Mattone R,Oriolo G.Stabilization of an underactuated planar 2R manipulator[J].International Journal of Robust and Nonlinear Control,2000,10(4):181-198.DOI:10.1002/(sici)1099-1239(20000415)10:4<81::aid-rnc471>3.0.co;2-x.
[11] de Luca A,Iannitti S,Mattone R,et al.Control problems in underactuated manipulators[C]//2001 IEEE/ASME International Conference on Advanced Intelligent Mechatronics. Como,Italy,2001:855-861.DOI:10.1109/AIM.2001.936778.
[12] Lai X Z,Wang Y W,Wu M,et al.Stable control strategy for planar three-link underactuated mechanical system[J].ASME Transactions on Mechatronics,2016,21(3):1345-1356.DOI:10.1109/tmech.2016.2519529.
[13] Arai H,Tanie K,Shiroma N.Nonholonomic control of a three-DOF planar underactuated manipulator[J].IEEE Transactions on Robotics and Automation,1998,14(5):681-695.DOI:10.1109/70.720345.
[14] Bhave M,Janardhanan S,Dewan L.Configuration control of planar underactuated robotic manipulator using terminal sliding mode[J].IFAC-Papers On Line,2016,49(1):148-153.DOI:10.1016/j.ifacol.2016.03.044.
[15] Storn R,Price K.Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces[J].Journal of Global Optimization,1997,11(4):341-359.DOI:10.1023/A:1008202821328.
[16] LaSalle J P.Stability theory for ordinary differentialequations[J].Journal of Differential Equations,1968,4(1):57-65.DOI:10.1016/0022-0396(68)90048-x.

备注/Memo

备注/Memo:
收稿日期: 2018-09-17.
作者简介: 黄自鑫(1988—),男,博士生;赖旭芝(联系人),女,博士,教授,博士生导师,laixz@cug.edu.cn.
基金项目: 国家自然科学基金资助项目(61773353)、湖北省自然科学基金创新群体资助项目(2015CFA010)、高等学校学科创新引智计划资助项目(B17040).
引用本文: 黄自鑫,赖旭芝,王亚午,等.二阶非完整平面3R欠驱动机械臂位置控制[J].东南大学学报(自然科学版),2019,49(2):245-250. DOI:10.3969/j.issn.1001-0505.2019.02.007.
更新日期/Last Update: 2019-03-20