[1]周磊,杨树莹,吴新,等.表面活性剂增强喷雾对褐煤细颗粒物的抑制[J].东南大学学报(自然科学版),2019,49(2):280-287.[doi:10.3969/j.issn.1001-0505.2019.02.012]
 Zhou Lei,Yang Shuying,Wu Xin,et al.Enhancing suppression performance of spray on lignite fine particles by adding surfactant[J].Journal of Southeast University (Natural Science Edition),2019,49(2):280-287.[doi:10.3969/j.issn.1001-0505.2019.02.012]
点击复制

表面活性剂增强喷雾对褐煤细颗粒物的抑制()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
49
期数:
2019年第2期
页码:
280-287
栏目:
环境科学与工程
出版日期:
2019-03-20

文章信息/Info

Title:
Enhancing suppression performance of spray on lignite fine particles by adding surfactant
作者:
周磊杨树莹吴新袁竹林杨林军
东南大学能源热转换及其过程测控教育部重点实验室, 南京 210096
Author(s):
Zhou Lei Yang Shuying Wu Xin Yuan Zhulin Yang Linjun
Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, Southeast University, Nanjing 210096, China
关键词:
表面活性剂 褐煤 细颗粒物 抑制 喷雾 润湿性
Keywords:
surfactant lignite fine particles inhibition water-spraying wetting performance
分类号:
X513
DOI:
10.3969/j.issn.1001-0505.2019.02.012
摘要:
针对喷雾法对褐煤粉尘抑制性能较差的问题,对比了8种表面活性剂的表面张力和对褐煤粉尘的润湿性能,并研究了表面活性剂的添加对溶液雾化性能的影响.最后在模拟试验平台开展了喷雾抑尘试验.试验结果表明,褐煤粉尘表面的化学结构使得褐煤具有较强的疏水性,表面活性剂对褐煤粉尘的润湿性能不仅取决于表面张力还取决于表面活性剂自身的结构.表面活性剂的加入可以同时降低液滴的平均粒径并使得液滴的运动速度加快,增强其对细颗粒物的捕集性能.添加表面活性剂可以提高传统喷雾法对褐煤细颗粒物的抑尘效率,其中非离子表面活性剂曲拉通X-100溶液的抑尘性能最佳.装置内细颗粒物的质量浓度和数量浓度下降为15.13 mg/m3和 1.0×106 cm-3.对比采用纯水喷雾的方法,其质量浓度抑尘效率从53.7%上升到91.6%.
Abstract:
Aiming at the poor suppression performance of spray on lignite particles, the wetting ability and the surface tension of 8 surfactant solutions, as well as the atomization performances of droplets were studied. The suppression experiment of water-spraying on lignite dust by adding surfactant was conducted by the simulation facility. The results show that lignite has strong hydrophobic properties owing to its chemical properties. The wetting ability of the surfactants is both depended on the surface tension and chemical structure of the surfactants. The addition of surfactant reduces the median diameter(D50)of the droplets and increases the axial velocity of droplets, resulting in the improvement of fine particle removal performance. Furthermore, by adding surfactant into water, the removal efficiency of water-spraying on lignite fine particles is obviously enhanced. The nonionic surfactant, called the TritonX-100, exhibits the superior wetting and removal performance on lignite dust. The number and mass concentrations of lignite fine particles in the facility are 15.13 mg/m3 and 1.0×106 cm-3 after spraying of TritonX-100 solution. Compared with the removal efficiency of traditional spraying method, the removal efficiency of the fine particle mass concentration is increased from 53.7% to 91.6%.

参考文献/References:

[1] Zheng S, Pozzer A, Cao C X, et al. Long-term(2001—2012)concentrations of fine particulate matter(PM2.5)and the impact on human health in Beijing, China[J]. Atmospheric Chemistry and Physics, 2015, 15(10): 5715-5725. DOI:10.5194/acp-15-5715-2015.
[2] Huang R J, Zhang Y L, Bozzetti C, et al. High secondary aerosol contribution to particulate pollution during haze events in China[J].Nature, 2014, 514(7521): 218-222. DOI:10.1038/nature13774.
[3] Sun Y L, Zhuang G S, Tang A H, et al. Chemical characteristics of PM2.5 and PM10 in Haze-Fog episodes in Beijing[J]. Environmental Science & Technology, 2006, 40(10): 3148-3155. DOI:10.1021/es051533g.
[4] 黄永琛, 杨宋, 陈辰, 等. 燃煤电厂烟尘超净排放技术路线探讨[J]. 能源与节能, 2015(3): 126-129. DOI:10.3969/j.issn.2095-0802.2015.03.056.
Huang Y C, Yang S, Chen C, et al. Discussion on smoke clean emissions technology in coal-fired power plant[J]. Energy and Conservation, 2015(3): 126-129. DOI:10.3969/ j.issn.2095-0802. 2015.03.056. (in Chinese)
[5] 赵永椿, 马斯鸣, 杨建平, 等. 燃煤电厂污染物超净排放的发展及现状[J]. 煤炭学报, 2015, 40(11): 2629-2640. DOI:10.13225/j.cnki.jccs.2015.8001.
Zhao Y C, Ma S M, Yang J P, et al. Status of ultra-low emission technology in coal-fired power plant[J]. Journal of China Coal Society, 2015, 40(11): 2629-2640. DOI:10.13225/j.cnki.jccs.2015.8001. (in Chinese)
[6] 赵靓. 机动车尾气污染及其减排措施[J]. 环境科学与管理, 2008, 33(5): 87-88, 107. DOI:10.3969/j.issn. 1673-1212.2008.05.023.
Zhao L. Tail gas pollution and decreasing measures[J]. Environmental Science and Management, 2008, 33(5): 87-88, 107. DOI:10.3969/j.issn.1673-1212.2008.05.023. (in Chinese)
[7] 胡书英. 减少尾气污染改善空气质量: 太原市机动车污染防治的实践[J]. 科技情报开发与经济, 2012, 22(13): 126-127. DOI:10.3969/j.issn.1005-6033. 2012.13. 054.
Hu S Y. Improving air quality through reducing tail-gas pollution: The practice of motor vehicle pollution control in Taiyuan city[J]. Sci-Tech Information Development & Economy, 2012, 22(13): 126-127. DOI:10.3969/j.issn. 1005-6033.2012.13.054. (in Chinese)
[8] Santacatalina M, Reche C, Minguillón M C, et al. Impact of fugitive emissions in ambient PM levels and composition:A case study in Southeast Spain[J]. Science of the Total Environment, 2010, 408(21): 4999-5009. DOI:10.1016/ j.scitotenv.2010.07.040.
[9] Fan S B, Tian G, Li G, et al. Road fugitive dust emission characteristics in Beijing during Olympics Game 2008 in Beijing, China[J]. Atmospheric Environment, 2009, 43(38): 6003-6010. DOI:10.1016/j.atmosenv. 2009.08. 028.
[10] 徐祎, 朱庚富. 煤场防风网防尘技术研究[J]. 环境科学与管理, 2013, 38(9): 93-98. DOI:10.3969/j.issn.1673-1212.2013.09.022.
Xu Y, Zhu G F. Study of dust control with windbreak in coal storage yard[J]. Environmental Science and Management, 2013, 38(9): 93-98. DOI:10.3969/j.issn. 1673-1212.2013.09.022. (in Chinese)
[11] 刘生玉, 苏立红, 郭建英, 等. 散料表层渗透固化机理及技术应用研究[J]. 煤炭学报, 2011, 36(S1): 125-130. DOI:10.13225/j.cnki.jccs.2011.s1.032.
Liu S Y, Su L H, Guo J Y, et al. Research of mechanism of bulk coal surface layer permeation solidification and its technology application[J]. Journal of China Coal Society, 2011, 36(S1): 125-130. DOI:10.13225/j.cnki.jccs. 2011.s1.032. (in Chinese)
[12] Okonkwo E M, Ofoegbu O. Renewable eco-friendly material for road dust suppression and prevention[C]//2nd International Conference on Waste Management,Water Pollution Air Pollution, Indoor Climate(WWAI′08). Corfu, Greece, 2008: 266-270.
[13] Grundnig P W, Höflinger W, Mauschitz G, et al. Influence of air humidity on the suppression of fugitive dust by using a water-spraying system[J]. China Particuology, 2006, 4(5): 229-233. DOI:10.1016/s1672-2515(07)60265-6.
[14] 吴超. 化学抑尘[M]. 长沙:中南大学出版社, 2003:78,123-124.
[15] Nguyen V G. Compositions for dust suppression and methods: US, US8052890 [P]. 2011.
[16] Ding C, Nie B S, Yang H, et al. Experimental research on optimization and coal dust suppression performance of magnetized surfactant solution[J].Procedia Engineering, 2011, 26: 1314-1321. DOI:10.1016/j.proeng.2011.11. 2306.
[17] Medeiros M A, Leite C M M, Lago R M. Use of glycerol by-product of biodiesel to produce an efficient dust suppressant[J].Chemical Engineering Journal, 2012, 180: 364-369. DOI:10.1016/j.cej.2011.11.056.
[18] 尹立群. 我国褐煤资源及其利用前景[J]. 煤炭科学技术, 2004, 32(8): 12-14, 23. DOI:10.3969/j.issn.0253-2336.2004.08.004.
Yin L Q. Lignite resources and utilization outlook in China[J]. Coal Science and Technology, 2004, 32(8): 12-14, 23. DOI:10.3969/j.issn.0253-2336.2004.08.004. (in Chinese)
[19] 煤尘卫生标准研制课题组, 苍恩志, 刘树春. 煤尘对呼吸系统危害的研究[J]. 工业卫生与职业病, 1989, 15(5): 265-268. DOI:10.13692/j.cnki.gywsyzyb.1989. 05.002.
[20] 蔡周全, 罗振敏, 程方明. 瓦斯煤尘爆炸传播特性的实验研究[J]. 煤炭学报, 2009, 34(7): 938-941. DOI:10. 13225/j.cnki.jccs.2009.07.020.
Cai Z Q, Luo Z M, Cheng F M. Experimental study on propagation characteristics of gas/coal dust explosion[J]. Journal of China Coal Society, 2009, 34(7): 938-941. DOI:10.13225/j.cnki.jccs.2009.07.020. (in Chinese)
[21] 罗根华, 李博, 丁莹莹, 等. 煤尘化学组成及结构参数对煤尘润湿性的影响规律[J]. 大连交通大学学报, 2016, 37(3): 64-67. DOI:10.3969/j.issn.1673-9590.2016. 03.016.
Luo G H, Li B, Ding Y Y, et al. Study on influence of coal dust wettability by chemical composition and structure parameters[J]. Journal of Dalian Jiaotong University, 2016, 37(3): 64-67. DOI:10.3969/j.issn.1673-9590.2016.03.016. (in Chinese)
[22] Glanville J O, Wightman J P. Actions of wetting agents on coal dust[J].Fuel, 1979, 58(11): 819-822. DOI:10.1016/ 0016-2361(79)90189-3.
[23] 陈宗淇. 胶体与界面化学 [M]. 北京:高等教育出版社, 2001:30-31.
[24] 杨静. 煤尘的润湿机理研究[D]. 青岛: 山东科技大学, 2008.
  Yang J. Study on wettability mechanism of coal dust[D]. Qingdao: Shandong University of Science and Technology, 2008.(in Chinese)
[25] 曹建明. 喷雾学[M]. 北京:机械工业出版社, 2005:17-24.
[26] Ejim C E, Rahman M A, Amirfazli A, et al. Effects of liquid viscosity and surface tension on atomization in two-phase, gas/liquid fluid coker nozzles[J].Fuel, 2010, 89(8): 1872-1882. DOI:10.1016/j.fuel.2010.03.005.
[27] 周刚. 综放工作面喷雾降尘理论及工艺技术研究[D].青岛: 山东科技大学, 2009.
  Zhou G. Research of theory about dust prevention by water-cloud and relevant techniques for fully-mechanized caving coal face[D]. Qingdao: Shandong University of Science and Technology, 2009.(in Chinese)
[28] 颜金培, 杨林军, 张霞, 等. 润湿剂促进燃油细颗粒捕集的实验研究[J]. 化工学报, 2008, 59(10): 2616-2621. DOI:10.3321/j.issn:0438-1157.2008.10.031.
Yan J P, Yang L J, Zhang X, et al. Experimental study on promotion of fine particles capture with wetting agents[J]. Journal of Chemical Industry and Engineering(China), 2008, 59(10): 2616-2621. DOI:10.3321/j.issn:0438-1157. 2008.10.031. (in Chinese)

相似文献/References:

[1]冉文静,傅大放.黑麦草修复模拟重金属污染土壤的化学强化及其潜在风险[J].东南大学学报(自然科学版),2011,41(4):793.[doi:10.3969/j.issn.1001-0505.2011.04.026]
 Ran Wenjing,Fu Dafang.Effects and risk of chemical enhancement measures to phytoremediation using Lolium L. for artificially polluted soil with heavy metals[J].Journal of Southeast University (Natural Science Edition),2011,41(2):793.[doi:10.3969/j.issn.1001-0505.2011.04.026]

备注/Memo

备注/Memo:
收稿日期: 2018-09-07.
作者简介: 周磊(1985—),男,博士,博士生;杨林军(联系人),男,教授,博士生导师,ylj@seu.edu.cn.
基金项目: 国家重点研发计划资助项目(2016YFB0600602).
引用本文: 周磊,杨树莹,吴新,等.表面活性剂增强喷雾对褐煤细颗粒物的抑制[J].东南大学学报(自然科学版),2019,49(2):280-287. DOI:10.3969/j.issn.1001-0505.2019.02.012.
更新日期/Last Update: 2019-03-20