[1]李丽园,周茂定,冀伟,等.基于剪切附加挠度的波形钢腹板组合箱梁挠度计算[J].东南大学学报(自然科学版),2019,49(2):296-302.[doi:10.3969/j.issn.1001-0505.2019.02.014]
 Li Liyuan,Zhou Maoding,Ji Wei,et al.Deflection calculation of composite box girder with corrugated steel webs based on shear additional deflection[J].Journal of Southeast University (Natural Science Edition),2019,49(2):296-302.[doi:10.3969/j.issn.1001-0505.2019.02.014]
点击复制

基于剪切附加挠度的波形钢腹板组合箱梁挠度计算()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
49
期数:
2019年第2期
页码:
296-302
栏目:
交通运输工程
出版日期:
2019-03-20

文章信息/Info

Title:
Deflection calculation of composite box girder with corrugated steel webs based on shear additional deflection
作者:
李丽园1周茂定2冀伟1刘世忠1
1兰州交通大学土木工程学院, 兰州 730070; 2甘肃农业大学土木工程系, 兰州 730070
Author(s):
Li Liyuan1 Zhou Maoding2 Ji Wei1 Liu Shizhong1
1School of Civil Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
2Department of Civil Engineering, Gansu Agricultural University, Lanzhou 730070, China
关键词:
波形钢腹板组合箱梁 剪切附加挠度 虚功原理 挠曲剪应力 剪切形式因子
Keywords:
composite box girder with corrugate steel webs shear additional deflection virtual work principle flexural shear stress shear form factor
分类号:
U448.213
DOI:
10.3969/j.issn.1001-0505.2019.02.014
摘要:
为了更精确地求解波形钢腹板组合箱梁的挠度,通过分析该组合箱梁挠曲剪应力分布特点,结合虚功原理,推导出考虑全截面剪切影响的剪切形式因子.基于能量变分原理,推导出该组合箱梁剪切附加挠度的控制微分方程,并给出一般荷载条件下简支箱梁剪切附加挠度的表达式.数值算例结果表明,考虑剪切变形影响计算的组合箱梁挠度与ANSYS空间有限元计算结果及实测值吻合良好,剪切变形对组合箱梁的挠度影响较大.参数分析结果表明:随着宽高比的增大,采用剪切系数方法计算所得的组合箱梁附加挠度也增大;随着跨高比的增大,波形钢腹板剪切变形产生的附加挠度不断减小,当跨高比大于40时,可忽略腹板剪切变形的影响.
Abstract:
To solve the deflection of a composite box girder with corrugated steel webs more accurately, a shear form factor considering the full section shear effect was derived by analyzing the distribution characteristics of the flexural shear stress of the composite box girder and combing with virtual work principle. The control differential equation for the shear additional deflection of the composite box girder was derived based on the energy variation principle, and the expression of the shear additional deflection of the simple-support box girder under general loading conditions was given. The results of the numerical examples show that the deflection of the composite box girder considering the influence of the shear deformation is in good agreement with the calculation results of ANSYS space finite element and the measured values. The shear deformation has a great influence on the deflection of the composite box girder. The results of parametric analysis show that with the increase of the aspect ratio, the additional deflection of the composite box girder calculated by the shear coefficient method increases. With the increase of the span-depth ratio, the additional deflection caused by the shear deformation of the corrugated steel webs decreases. When the span-depth ratio is greater than 40, the influence of shear deformation of the webs can be neglected.

参考文献/References:

[1] Elgaaly M, Seshadri A, Hamilton R W. Bending strength of steel beams with corrugated webs[J]. Journal of Structural Engineering, 1997, 123(6): 772-782.DOI:10.1061/(asce)0733-9445(1997)123:6(772).
[2] Chan C L, Khalid Y A,Sahari B B, et al. Finite element analysis of corrugated web beams under bending[J]. Journal of Constructional Steel Research, 2002, 58(11): 1391-1406. DOI:10.1016/s0143-974x(01)00075-x.
[3] Khalid Y A, Chan C L,Sahari B B, et al. Bending behaviour of corrugated web beams[J]. Journal of Materials Processing Technology, 2004, 150(3): 242-254.DOI:10.1016/j.jmatprotec.2004.02.042.
[4] Elgaaly M, Hamilton R W, Seshadri A. Shear strength of beams with corrugated webs[J]. Journal of Structural Engineering, 1996, 122(4): 390-398.DOI:10.1016/(asce)0733-9445(1996)122:4(390).
[5] 乔朋, 狄谨, 秦凤江. 单箱多室波形钢腹板组合箱梁的腹板剪应力分析[J]. 工程力学, 2017, 34(7): 97-107.
  Qiao P, Di J, Qin F J. Shear stress in the webs of single-box multi-cell composite box girders with corrugated steel webs[J]. Engineering Mechanics, 2017, 34(7): 97-107.(in Chinese)
[6] 吴文清, 叶见曙, 万水, 等. 波形钢腹板-混凝土组合箱梁截面变形的拟平截面假定及其应用研究[J]. 工程力学, 2005, 22(5): 177-180, 198. DOI:10.3969/j.issn.1000-4750.2005.05.032.
Wu W Q, Ye J S, Wan S, et al. Quasi plane assumption and its application in steel-concrete composite box girders with corrugated steel webs[J]. Engineering Mechanics, 2005, 22(5): 177-180, 198. DOI:10.3969/j.issn.1000-4750.2005.05.032. (in Chinese)
[7] 李宏江, 叶见曙, 万水, 等. 剪切变形对波形钢腹板箱梁挠度的影响[J]. 交通运输工程学报, 2002, 2(4): 17-20. DOI:10.3321/j.issn:1671-1637.2002.04.004.
Li H J, Ye J S, Wan S, et al. Influence of shear deformation on deflection of box girder with corrugated steel webs[J]. Journal of Traffic and Transportation Engineering, 2002, 2(4): 17-20. DOI:10.3321/j.issn:1671-1637.2002.04.004. (in Chinese)
[8] 李明鸿, 万水, 蒋正文, 等. 波形钢腹板混凝土组合梁挠度计算的初参数法[J]. 华南理工大学学报(自然科学版), 2015, 43(2): 66-74. DOI:10.3969/j.issn.1000-565X.2015.02.010.
Li M H, Wan S, Jiang Z W, et al. Initial parameter method for deflection calculation of concrete composite girder with corrugated steel webs[J]. Journal of South China University of Technology(Natural Science Edition), 2015, 43(2): 66-74. DOI:10.3969/j.issn.1000-565X.2015.02.010. (in Chinese)
[9] 聂建国, 李法雄, 樊健生. 波形钢腹板梁变形计算的有效刚度法[J]. 工程力学, 2012, 29(8): 71-79.
  Nie J G, Li F X, Fan J S. Effective stiffness method for calculating deflection of corrugated web girder[J]. Engineering Mechanics, 2012, 29(8): 71-79.(in Chinese)
[10] 姚浩, 程进. 基于变分原理的波形钢腹板箱梁挠度计算解析法[J]. 工程力学, 2016, 33(8): 177-184.
  Yao H, Cheng J. Analytical method for calculating defection of corrugated box girders based on variational principle[J]. Engineering Mechanics, 2016, 33(8): 177-184.(in Chinese)
[11] 冀伟, 蔺鹏臻, 刘世忠. 波形钢腹板PC组合箱梁桥的挠度计算与分析[J]. 西南交通大学学报, 2018, 53(1): 46-55. DOI:10.3969/j.issn.0258-2724.2018.01.006.
Ji W, Lin P Z, Liu S Z. Deflection calculation and analysis of PC box girder bridges with corrugated steel webs[J]. Journal of Southwest Jiaotong University, 2018, 53(1): 46-55. DOI:10.3969/j.issn.0258-2724.2018.01.006. (in Chinese)
[12] 郭金琼, 房贞政, 郑振. 箱形梁设计理论[M]. 2版. 北京: 人民交通出版社,2008: 1-50.
[13] 铁摩辛柯(Timoshenko S), 盖尔(Gere J). 材料力学[M]. 胡人礼,译. 北京: 科学出版社, 1978:357-382.
[14] Samanta A, Mukhopadhyay M. Finite element static and dynamic analyses of folded plates[J]. Engineering Structures, 1999, 21(3): 277-287. DOI:10.1016/S0141-0296(97)90172-3.
[15] 戴姆(Dym C L), 沙梅斯(Shames I H). 固体力学变分法[M]. 袁祖贻,等译. 北京: 中国铁道出版社, 1984:184-205.
[16] 吴鸿庆, 任侠. 结构有限元分析[M]. 北京: 中国铁道出版社, 2000: 94-176.

备注/Memo

备注/Memo:
收稿日期: 2018-09-25.
作者简介: 李丽园(1987—),女,博士生;刘世忠(联系人),男,博士,教授,博士生导师,Liusz2000@163.com.
基金项目: 国家自然科学基金资助项目(51568036,51708269,51868039,51868040)、兰州交通大学青年科学基金资助项目(2017017).
引用本文: 李丽园,周茂定,冀伟,等.基于剪切附加挠度的波形钢腹板组合箱梁挠度计算[J].东南大学学报(自然科学版),2019,49(2):296-302. DOI:10.3969/j.issn.1001-0505.2019.02.014.
更新日期/Last Update: 2019-03-20