[1]张晨辉,邓长根,应武挡.轴压套管构件的典型破坏模式与极限承载力[J].东南大学学报(自然科学版),2019,49(2):311-320.[doi:10.3969/j.issn.1001-0505.2019.02.016]
 Zhang Chenhui,Deng Changgen,Ying Wudang.Typical failure mode and ultimate bearing capacity of sleeved compression member under axial compression[J].Journal of Southeast University (Natural Science Edition),2019,49(2):311-320.[doi:10.3969/j.issn.1001-0505.2019.02.016]
点击复制

轴压套管构件的典型破坏模式与极限承载力()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
49
期数:
2019年第2期
页码:
311-320
栏目:
土木工程
出版日期:
2019-03-20

文章信息/Info

Title:
Typical failure mode and ultimate bearing capacity of sleeved compression member under axial compression
作者:
张晨辉邓长根应武挡
同济大学土木工程学院, 上海 200092
Author(s):
Zhang Chenhui Deng Changgen Ying Wudang
College of Civil Engineering, Tongji University, Shanghai 200092, China
关键词:
套管构件 非线性有限元分析 破坏机理 极限承载力 参数分析 实用计算公式
Keywords:
sleeved compression member nonlinear finite element analysis failure mechanism ultimate bearing capacity parametric analysis practical calculation formula
分类号:
TU391
DOI:
10.3969/j.issn.1001-0505.2019.02.016
摘要:
建立了轴向压力作用下两端铰接钢套管构件的非线性有限元分析模型.通过套管构件的非线性有限元分析,得到内核弯矩分布随轴向压力增大的变化规律,并得出套管构件的破坏机理.分析了内核长细比、内核外伸长度、套管-内核间隙及套管-内核壁厚比等参数对套管构件极限承载力因子的影响,并采用多项式函数拟合得到套管构件极限承载力的实用计算公式. 结果表明,轴向压力增大,内核弯矩最大截面逐渐向内核端部移动,在轴向压力与弯矩的共同作用下,内核端部附近截面达到全截面塑性,导致套管构件承载力下降.随内核长细比的增大以及内核外伸长度及套管-内核间隙的减小,套管构件极限承载力因子逐渐增加.
Abstract:
The nonlinear finite element analysis model was established for the pinned-end steel sleeved compression member under axial compression. By the nonlinear finite element analysis of the sleeved compression members, the changing trend of the core moment distribution was obtained with the increase of the axial load, and the failure mechanism of the sleeved compression member was explained. The effects of the core slenderness ratio, the core protrusion length above sleeve, the gap between the sleeve and core, and the wall thickness ratio of the sleeve to core on the ultimate bearing capacity factor of the sleeved compression member were analyzed. The practical calculation formula for the ultimate bearing capacity of the sleeved compression member was fitted by the polynomial functions. The results show that the core section with the maximum moment shifts gradually to the end with the increase of the axial load. The ultimate bearing capacity of the sleeved compression member decreases once the core section near the end subjected to combined axial force and moment achieves full-section plasticity. The ultimate bearing capacity factor of the sleeved compression member increases with the increase of the core slenderness ratio and the decrease of the core protrusion length above sleeve and the gap between the sleeve and the core.

参考文献/References:

[1] Galambos T V, Surovek A E. Structural stability of steel[M]. Hoboken, NJ, USA: John Wiley & Sons, 2008: 318-319. DOI:10.1002/9780470261316.
[2] Ba?ant Z P. Structural stability[J]. International Journal of Solids and Structures, 2000, 37(1/2): 55-67. DOI:10.1016/S0020-7683(99)00078-5.
[3] 苏慈. 大跨度刚性空间钢结构极限承载力研究[D]. 上海: 同济大学, 2006.
  Su C. Research on the limited capacity of rigid large-span steel space structures[D]. Shanghai: Tongji University, 2006.(in Chinese)
[4] 马腾飞, 赵淑丽, 李红梅, 等. 杆件屈曲对单层球面网壳稳定性能的影响研究[J]. 河北农业大学学报, 2013, 36(5): 113-117. DOI:10.13320/j.cnki.jauh.2013.05.025.
Ma T F, Zhao S L, Li H M, et al. Analysis of the member buckling influence to the stability of single-layer lattice dome[J]. Journal of Agricultural University of Hebei, 2013, 36(5): 113-117.DOI:10.13320/j.cnki.jauh.2013.05.025. (in Chinese)
[5] 罗永峰, 韩庆华, 李海旺. 建筑钢结构稳定理论与应用[M]. 北京: 人民交通出版社, 2010: 54-57.
[6] Abedi K, Parke G A R. Progressive collapse of single-layer braced domes[J].International Journal of Space Structures, 1996, 11(3): 291-306. DOI:10.1177/026635119601100302.
[7] Martin R,Delatte N J. Another look at Hartford civic center coliseum collapse[J]. Journal of Performance of Constructed Facilities, 2001, 15(1): 31-36. DOI:10.1061/(asce)0887-3828(2001)15:1(31).
[8] Makowski Z S. Analysis, design, and construction of braced domes[M]. London: Granada Publishing Ltd, 1984:161-173.
[9] El-Sheikh A. Effect of force limiting devices on behaviour of space trusses[J]. Engineering Structures, 1999, 21(1): 34-44. DOI:10.1016/S0141-0296(97)00136-3.
[10] Bai L J, Zhang Y F. Collapse fragility assessment of steel roof framings with force limiting devices under transient wind loading[J]. Frontiers of Structural and Civil Engineering, 2012, 6(3): 199-209. DOI:10.1007/s11709-012-0168-4.
[11] 贾斌. 轻型铝合金耗能支撑抗震性能及其对空间结构减震效应研究[D]. 上海: 同济大学, 2015.
  Jia B. Investigation on seismic performance of light aluminum alloy energy dissipation brace and its impact on spatial structural vibration control[D]. Shanghai: Tongji University, 2015.(in Chinese)
[12] 王秀丽, 周锟, 吴长. 强震作用下带屈曲约束支撑的K型网壳整体结构性能分析[J]. 北京交通大学学报, 2011, 35(1): 61-67. DOI:10.3969/j.issn.1673-0291.2011.01.014.
Wang X L, Zhou K, Wu C. Performance analysis of K-reticulated shell structure with BRBs under severe earthquakes[J]. Journal of Beijing Jiaotong University, 2011, 35(1): 61-67. DOI:10.3969/j.issn.1673-0291.2011.01.014. (in Chinese)
[13] Sridhara B N. Sleeved compression member: US,
   5175972[P]. 1993-01-05.
[14] Prasad B K. Experimental investigation of sleeved column[C]//33rd Structures, Structural Dynamics and Materials Conference.Dallas, USA, 1992: 991-999.
[15] 申波. 轴压套管构件静力稳定性能的理论与试验研究[D]. 上海: 同济大学, 2007.
  Shen B. Theoretical and experimental investigations on the static stability of sleeved compression members[D]. Shanghai: Tongji University, 2007.(in Chinese)
[16] 胡波. 轴心受压套管构件力学性能精细化分析与试验研究[D]. 杭州: 浙江大学, 2013.
  Hu B. Refined analysis on structural behavior and experimental study of axial compressed sleeved member[D]. Hangzhou: Zhejiang University, 2013.(in Chinese)
[17] Shen J, Seker O, Sutchiewcharn N, et al. Cyclic behavior of buckling-controlled braces[J]. Journal of Constructional Steel Research, 2016, 121: 110-125. DOI:10.1016/j.jcsr.2016.01.018.
[18] Chen W F. Structural stability: From theory to practice[J].Engineering Structures, 2000, 22(2): 116-122. DOI:10.1016/S0141-0296(98)00100-X.
[19] 中华人民共和国住房和城乡建设部. JGJ 7—2010 空间网格结构技术规程[S]. 北京: 中国建筑工业出版社, 2010.
[20] 中华人民共和国住房和城乡建设部. GB 50017—2017 钢结构设计标准[S]. 北京: 中国建筑工业出版社, 2017.
[21] Sugimoto H, Chen W F. Inelastic post-buckling behavior of tubular members[J]. Journal of structural engineering, 1985, 111(9):1965-1978. DOI:10.1061/(asce)0733-9445(1985)111:9(1965).
[22] da Silva L S, Simões R, Gervásio H. Design of steel structures: Eurocode 3: Design of steel structures, part 1-1: General rules and rules for buildings[M]. Berlin: Wilhelm Ernst & Sohn, 2016: 192-198.
[23] Zhang C H, Deng C G. Theoretical study of sleeved compression members considering the core protrusion[J]. Structural Engineering and Mechanics, 2018, 66(6): 783-792. DOI:10.12989/sem.2018.66.6.783.

相似文献/References:

[1]吴畅,潘钻峰,孟少平.应变硬化水泥基复合材料单轴滞回本构模型[J].东南大学学报(自然科学版),2015,45(5):969.[doi:10.3969/j.issn.1001-0505.2015.05.026]
 Wu Chang,Pan Zuanfeng,Meng Shaoping.Uniaxial cyclic constitutive model for strain hardening cementitious composites[J].Journal of Southeast University (Natural Science Edition),2015,45(2):969.[doi:10.3969/j.issn.1001-0505.2015.05.026]

备注/Memo

备注/Memo:
收稿日期: 2018-08-15.
作者简介: 张晨辉(1989—),男,博士生;邓长根(联系人),男,博士,教授,博士生导师,dengcg@tongji.edu.cn.
基金项目: 国家自然科学基金资助项目(51478330).
引用本文: 张晨辉,邓长根,应武挡.轴压套管构件的典型破坏模式与极限承载力[J].东南大学学报(自然科学版),2019,49(2):311-320. DOI:10.3969/j.issn.1001-0505.2019.02.016.
更新日期/Last Update: 2019-03-20