[1]朱举,乔春生,宋仪,等.基于突变理论的第三系弱胶结砾岩掌子面稳定性[J].东南大学学报(自然科学版),2019,49(2):321-327.[doi:10.3969/j.issn.1001-0505.2019.02.017]
 Zhu Ju,Qiao Chunsheng,Song Yi,et al.Tunnel face stability of tertiary weakly cemented conglomerate based on catastrophe theory[J].Journal of Southeast University (Natural Science Edition),2019,49(2):321-327.[doi:10.3969/j.issn.1001-0505.2019.02.017]
点击复制

基于突变理论的第三系弱胶结砾岩掌子面稳定性()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
49
期数:
2019年第2期
页码:
321-327
栏目:
土木工程
出版日期:
2019-03-20

文章信息/Info

Title:
Tunnel face stability of tertiary weakly cemented conglomerate based on catastrophe theory
作者:
朱举1乔春生1宋仪2陈松1邓斌1
1北京交通大学土木建筑工程学院, 北京 100044; 2中铁第六勘察设计院集团有限公司, 天津 300308
Author(s):
Zhu Ju1 Qiao Chunsheng1 Song Yi2 Chen Song1 Deng Bin1
1School of Civil Engineering, Beijing Jiaotong University, Beijing 100044, China
2China Railway Liuyuan Group Co., Ltd., Tianjin 300308, China
关键词:
突变理论 弱胶结砾岩 颗粒级配 胶结程度 失稳判据 掌子面稳定性
Keywords:
catastrophe theory weakly cemented conglomerate particle gradation cementing degree instability criterion tunnel face stability
分类号:
TU458.3
DOI:
10.3969/j.issn.1001-0505.2019.02.017
摘要:
为了评价第三系弱胶结砾岩掌子面稳定性,基于突变理论对强度折减法进行改进,提出了适合砾岩掌子面稳定性评价的失稳判据, 结合室内试验,采用数值方法研究了颗粒级配和胶结程度对掌子面稳定性的影响.结果表明,位移判据最适用于掌子面稳定性分析,通过分析掌子面不同特征点的安全系数可以判断掌子面破坏形式,选择最易失稳点得到掌子面的安全系数.弱胶结砾岩掌子面安全系数为3.79,极弱胶结砾岩掌子面安全系数均小于1,掌子面开挖前必须进行超前支护.胶结程度是影响弱胶结砾岩掌子面稳定性的决定性因素,胶结程度一致时,增加砾岩中砾石含量能显著提高掌子面自稳能力.第三系弱胶结砾岩掌子面拱底处为最不稳定点,掌子面失稳破坏时首先表现为拱底隆起.
Abstract:
To evaluate the tunnel face stability of tertiary weakly cemented conglomerate, a strength reduction method was improved based on the catastrophe theory. A criterion of instability was proposed for evaluating the tunnel face stability of weakly cemented conglomerate. Combining with the results of the laboratory tests, the influence of the particle gradation and the cementing degree on the stability of the tunnel surface was studied by the numerical method. The research results show that the displacement criterion is most suitable for the stability analysis of the tunnel face. By analyzing the safety factors at different feature points of the tunnel face, the damage forms of the tunnel face can be judged, and the most unstable point is chosen to obtain the safety factor of the tunnel face. The safety factor of the tunnel face of weakly cemented conglomerate is 3.79, and the safety factors of the tunnel face of extremely weakly cemented conglomerate face are less than 1, which means advance support must be carried out before the excavation of the tunnel face. The cementation degree is the decisive factor affecting the stability of the tunnel face of weakly cemented conglomerate. The increase of the gravel content in conglomerate can significantly improve the self-stabilizing ability of the tunnel face when the cementation degree is consistent. The inverted arch of the tunnel face is the most unstable point, and inverted arch extrusion is the first sign of the instability failure of the tunnel face of weakly cemented conglomerate.

参考文献/References:

[1] Broms B B, Bennermark H. Stability of clay at vertical openings[J]. Journal of Soil Mechanics and Foundations Division, 1967, 93(1):71-94.
[2] Leca E, Dormieux L. Upper and lower bound solutions for the face stability of shallow circular tunnels in frictional material[J]. Géotechnique, 1990, 40(4):581-606. DOI: 10.1680/geot.1990.40. 4.581.
[3] Zienkiewicz O C, Humpheson C, lewis R W. Associated and non-associated visco-plasticity and plasticity in soil mechanics[J]. Géotechnique, 1975, 25(4): 671-689. DOI: 10.1680/geot.1975.25.4.671.
[4] 皇甫明,孔恒,王梦恕,等.核心土留设对隧道工作面稳定性的影响[J].岩石力学与工程学报, 2005,24(3):521-525. DOI: 10.3321/j.issn:1000-6915. 2005.03.026
Huang P M, Kong H, Wang M S, et al. Effect of keeping core soil on stability of tunnel working face [J]. Chinese Journal of Rock Mechanics and Engineering. 2005, 24(3): 521-525. DOI:10.3321/j.issn: 1000-6915.2005.03.026. (in Chinese)
[5] 胡亚峰,董新平,马晓良,等.浅埋软弱地层隧道施工中掌子面稳定性研究[J].地下空间与工程学报,2013,9(6):1368-1372,1385.
  Hu Y F, Dong X P, Ma X L, et al. Analysis on Face stability of shallow buried tunnel in weak formation during its construction[J]. Chinese Journal of Underground Space and Engineering, 2013,9(6):1368-1372,1385.(in Chinese)
[6] 黄俊,党发宁,周磊,等.关于土体隧道掌子面开挖稳定性的量化探讨[J].岩石力学与工程学报, 2016,35(S1):3127-3137. DOI: 10.13722/j.cnki. jrme.2015.0294.
Huang J, Dang F N, Zhou L, et al. The quantitative analysis of the face stability on soil tunnel[J]. Chinese Journal of Rock Mechanics and Engineering. 2016, 35(S1): 3127-3137. DOI:10. 13722/j.cnki.jrme.2015.0294. (in Chinese)
[7] 郑泽源,施成华,雷明锋,等.营盘路湘江隧道断层破碎带段施工掌子面稳定性分析[J].铁道科学与工程学报,2012,9(5):59-64. DOI: 10.19713/ j.cnki.43-1423/u.2012.05.012.
Zheng Z Y, Shi C H, Lei M F, et al. Stability analysis of Xiangjiang tunnel face on Yingpan Road which crosses the fault fracture zone in construction [J]. Journal of Railway Science and Engineering, 2012, 9(5): 59-64. DOI:10.3969/j. issn.1672-7029.2012.05.012. (in Chinese)
[8] 陈力华,靳晓光.有限元强度折减法中边坡三种失效判据的适用性研究[J].土木工程学报,2012,45(9): 136-146. DOI: 10.15951/j.tmgcxb. 2012.09.003.
Chen L H, Jin X G. Study on the applicability of three criteria for slope instability using finite element strength reduction method [J]. China Civil Engineering Journal, 2012, 45(9): 136-146. DOI:10.15951/j.tmgcxb. 2012.09.003. (in Chinese)
[9] 郑颖人,刘兴华.近代非线性科学与岩石力学问题[J].岩土工程学报, 1996,18(1): 98-100.
  Zheng Y G, Liu X H. Modern nonlinear science and rock mechanics problems[J]. Chinese Journal of Geotechnical Engineering, 1996,18(1): 98-100.(in Chinese)
[10] Thom R. Structural stability, catastrophe theory, and applied mathematics[J]. SIAM Review, 1977, 19(2):189-201. DOI: 10.1137/1019036.
[11] 朱举,乔春生,宋仪,等.颗粒特性对第三系弱胶结砾岩抗剪强度的影响[J].哈尔滨工业大学学报,2019,待发表.
  Zhu J, Qiao C S, Song Y, et al. Effect of particle characteristics on shear strength of weakly cemented conglomerate in tertiary[J]. Journal of Harbin Institute of Technology, 2019, to appear.(in Chinese)
[12] 中华人民共和国水利部. GBJ 145—90 土的分类标准[S].北京:中国计划出版社, 1991.
[13] 孔恒,王梦恕,张德华.隧道底板隆起的成因、分类与控制[J].中国安全科学学报,2003,13(1):30-33. DOI: 10.16265/j.cnki.issn1003-3033.2003.01.008.
Kong H, Wang M S, Zhang D H. Causation and classification of tunnel floor heave and its control[J]. China Safety Science Journal, 2003,13(1):30-33. DOI:10.16265/j.cnki. issn1003-3033.2003.01.008. (in Chinese)
[14] 钟祖良,刘新荣,王道良,等.桃树垭隧道底鼓发生机理与防治技术研究[J].岩土工程学报, 2012,34(3):471-476.
  Zhong Z L, Liu X R, Wang D L, et al. Mechanism analysis of floor heave in Taoshuya tunnel and its prevention techniques[J]. Chinese Journal of Geotechnical Engineering, 2012,34(3): 471-476.(in Chinese)

备注/Memo

备注/Memo:
收稿日期: 2018-10-19.
作者简介: 朱举(1992—),男,博士生;乔春生(联系人),男,博士,教授,博士生导师,qiaocs@163.com.
基金项目: 国家自然科学基金资助项目(51478031).
引用本文: 朱举,乔春生,宋仪,等.基于突变理论的第三系弱胶结砾岩掌子面稳定性[J].东南大学学报(自然科学版),2019,49(2):321-327. DOI:10.3969/j.issn.1001-0505.2019.02.017.
更新日期/Last Update: 2019-03-20