[1]杨才千,刘飞,潘勇,等.冻融循环作用下聚乙烯醇纤维增强快硬混凝土的力学性能[J].东南大学学报(自然科学版),2019,49(2):334-339.[doi:10.3969/j.issn.1001-0505.2019.02.019]
 Yang Caiqian,Liu Fei,Pan Yong,et al.Mechanical property of polyvinyl alcohol fiber reinforced fast-hardening concrete under freezing-thaw cycle effect[J].Journal of Southeast University (Natural Science Edition),2019,49(2):334-339.[doi:10.3969/j.issn.1001-0505.2019.02.019]
点击复制

冻融循环作用下聚乙烯醇纤维增强快硬混凝土的力学性能()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
49
期数:
2019年第2期
页码:
334-339
栏目:
材料科学与工程
出版日期:
2019-03-20

文章信息/Info

Title:
Mechanical property of polyvinyl alcohol fiber reinforced fast-hardening concrete under freezing-thaw cycle effect
作者:
杨才千12 刘飞1潘勇3李科锋12
1湘潭大学土木工程与力学学院, 湘潭 411100; 2东南大学土木工程学院, 南京 210096; 3江苏汾灌高速公路管理有限公司, 连云港 222000
Author(s):
Yang Caiqian12 Liu Fei1 Pan Yong3 Li Kefeng12
1College of Civil Engineering and Mechanics, Xiangtan University, Xiangtan 411100, China
2School of Civil Engineering, Southeast University, Nanjing 210096, China
3Jiangsu Fenguan Expressway Management Co., Ltd., Lianyungang 222000, China
关键词:
聚乙烯醇纤维混凝土 力学性能 纤维掺量 冻融循环 相对动弹性模量
Keywords:
polyvinyl alcohol fiber concrete mechanical property fiber volume fraction freeze-thaw cycle relative dynamic modulus
分类号:
TU528
DOI:
10.3969/j.issn.1001-0505.2019.02.019
摘要:
为了揭示冻融下快硬聚乙烯醇纤维混凝土的力学性能及其变化规律,对不同纤维体积掺量的纤维增强快凝混凝土开展了冻融循环研究,测得不同冻融循环次数后的抗压强度、抗折强度、相对动弹性模量与质量损失率,并提出了聚乙烯醇纤维早强混凝土相对动弹性模量冻融损伤模型.研究结果表明:掺入0.2%~0.4%的聚乙烯醇纤维可以有效提高混凝土整体密实度及抗冻融能力,试件从脆性破坏过渡到延性破坏;150次冻融循环后,聚乙烯醇纤维增强快硬混凝土的抗压强度损失率小于17.8%;200次冻融循环后,抗折强度损失率及纵波波速下降幅度分别小于16%和10.6%.所提指数模型具有较高的适用性及拟合精度,能较好地反映聚乙烯醇纤维快凝混凝土冻融损伤的演化规律.
Abstract:
To investigate the mechanical properties of polyvinyl alcohol(PVA)fiber reinforced fast-hardening concrete and the degradation laws under freeze-thaw loading, a series of rapid freeze-thaw cycles experiments were carried out on the polyvinyl alcohol(PVA)fiber reinforced concrete with different fiber contents. The compressive strength, the flexural strength, the relative dynamic elastic modulus and the mass loss rate of PVA fiber reinforced fast-hardening concrete were tested after different freeze-thaw loading cycles. A freeze-thaw damage model was proposed to predict the relative dynamic modulus of PVA fiber reinforced fast-hardening concrete. The experimental results show that the integrity and the anti-freeze-thaw ability of the specimen can be improved by adding 0.2% to 0.4% PVA fibers, and the failure mode of the specimen transfers from the brittle mode to the ductile mode. The compressive strength loss rate of the specimen with PVA fiber is smaller than 17.8% after 150 freeze-thaw cycles. After 200 freeze-thaw cycles, the flexural strength loss rate and the longitudinal wave velocity decrease by smaller than 16% and 10.6%, respectively. The proposed exponential model has high applicability and precision. It can reflect the damage evolution of PVA fiber reinforced fast-hardening concrete under freeze-thaw loading.

参考文献/References:

[1] 严武建, 牛富俊, 吴志坚, 等. 冻融循环作用下聚丙烯纤维混凝土的力学性能[J]. 交通运输工程学报, 2016, 16(4): 37-44.
  Yan W J, Niu F J, Wu Z J, et al. Mechanical property of polypropylene fiber reinforced concrete under freezing-thawing cycle effect[J]. Journal of Traffic and Transportation Engineering, 2016, 16(4): 37-44.(in Chinese)
[2] Çavdar A. Investigation of freeze-thaw effects on mechanical properties of fiber reinforced cement mortars[J]. Composites Part B: Engineering, 2014, 58: 463-472. DOI:10.1016/j.compositesb.2013.11.013.
[3] Kosior-Kazberuk M, Berkowski P. Surface scaling resistance of concrete subjected to freeze-thaw cycles and sustained load[J]. Procedia Engineering, 2017, 172: 513-520. DOI:10.1016/j.proeng.2017.02.060.
[4] Sahmaran M, Özbay E, Yücel H E, et al. Frost resistance and microstructure of Engineered Cementitious Composites: Influence of fly ash and micro poly-vinyl-alcohol fiber[J]. Cement and Concrete Composites, 2012, 34(2): 156-165. DOI:10.1016/j.cemconcomp.2011.10.002.
[5] 徐世烺, 蔡向荣. 超高韧性纤维增强水泥基复合材料基本力学性能[J]. 水利学报, 2009, 40(9): 1055-1063. DOI:10.13243/j.cnki.slxb.2009.09.014.
Xu S L, Cai X R. Experimental study on mechanical properties of ultra-high toughness fiber reinforced cementitious composite[J]. Journal of Hydraulic Engineering, 2009, 40(9): 1055-1063. DOI:10.13243/j.cnki.slxb.2009.09.014. (in Chinese)
[6] 何锐, 李丹, 王帅, 等. PE/HPP混杂纤维混凝土的抗冻性能[J]. 华南理工大学学报(自然科学版), 2017, 45(4): 87-94. DOI:10.3969/j.issn.1000-565X.2017.04.013.
He R, Li D, Wang S, et al. Frost resistance of PE/HPP hybrid fiber-reinforced concrete[J]. Journal of South China University of Technology(Natural Science Edition), 2017, 45(4): 87-94. DOI:10.3969/j.issn.1000-565X.2017.04.013. (in Chinese)
[7] 冀晓东, 宋玉普, 刘建. 混凝土冻融损伤本构模型研究[J]. 计算力学学报, 2011, 28(3): 461-467.
  Ji X D, Song Y P, Liu J. Study on frost damage constitutive model of concrete[J]. Chinese Journal of Computational Mechanics, 2011, 28(3): 461-467.(in Chinese)
[8] Yun H D, Rokugo K. Freeze-thaw influence on the flexural properties of ductile fiber-reinforced cementitious composites(DFRCCs)for durable infrastructures[J]. Cold Regions Science and Technology, 2012, 78: 82-88. DOI:10.1016/j.coldregions.2012.02.002.
[9] Nam J, Kim G, Lee B, et al. Frost resistance of polyvinyl alcohol fiber and polypropylene fiber reinforcedcementitious composites under freeze thaw cycling[J]. Composites Part B: Engineering, 2016, 90: 241-250. DOI:10.1016/j.compositesb.2015.12.009.
[10] Jang J G, Kim H K, Kim T S, et al. Improved flexural fatigue resistance of PVA fiber-reinforced concrete subjected to freezing and thawing cycles[J].Construction and Building Materials, 2014, 59: 129-135. DOI:10.1016/j.conbuildmat.2014.02.040.
[11] 徐世烺, 蔡新华, 李贺东. 超高韧性水泥基复合材料抗冻耐久性能试验研究[J]. 土木工程学报, 2009, 42(9): 42-46. DOI:10.15951/j.tmgcxb.2009.09.012.
Xu S L, Cai X H, Li H D. Experimental study of the durability properties of ultra-high toughness cementitious composites under freezing and thawing cycles[J]. China Civil Engineering Journal, 2009, 42(9): 42-46. DOI:10.15951/j.tmgcxb.2009.09.012. (in Chinese)
[12] 罗昕, 卫军. 冻融条件下混凝土损伤演变与强度相关性研究[J]. 华中科技大学学报(自然科学版), 2006, 34(1): 98-100. DOI:10.3321/j.issn:1671-4512.2006.01.031.
Luo X, Wei J. The correlation between concrete strength and damage evolution in freeze-thaw cycles[J]. Journal of Huazhong University of Science and Technology(Nature Science), 2006, 34(1): 98-100. DOI:10.3321/j.issn:1671-4512.2006.01.031. (in Chinese)
[13] 刘卫东, 苏文悌, 王依民,等. 冻融循环作用下纤维混凝土的损伤模型研究[J]. 建筑结构学报, 2008, 29(1): 124-128. DOI:10.3321/j.issn:1000-6869.2008.01.018.
Liu W D, Su W T, Wang Y M, et al. Research on damage model of fibre concrete under action of freeze-thaw cycle[J]. Journal of Building Structures, 2008, 29(1): 124-128. DOI:10.3321/j.issn:1000-6869.2008.01.018. (in Chinese)
[14] 邹超英, 赵娟, 梁锋, 等. 冻融作用后混凝土力学性能的衰减规律[J]. 建筑结构学报, 2008, 29(1): 117-123, 138. DOI:10.3321/j.issn:1000-6869.2008.01.017.
Zou C Y, Zhao J, Liang F, et al. Degradation of mechanical properties of concrete caused by freeze-thaw action[J]. Journal of Building Structures, 2008, 29(1): 117-123, 138. DOI:10.3321/j.issn:1000-6869.2008.01.017. (in Chinese)
[15] 牛建刚, 左付亮, 王佳雷, 等. 塑钢纤维轻骨料混凝土的冻融损伤模型[J]. 建筑材料学报, 2018, 21(2): 235-240. DOI:10.3969/j.issn.1007-9629.2018.02.010.
Niu J G, Zuo F L, Wang J L, et al. Freeze-thaw damage model of plastic-steel fiber reinforced lightweight aggregate concrete[J]. Journal of Building Materials, 2018, 21(2): 235-240. DOI:10.3969/j.issn.1007-9629.2018.02.010. (in Chinese)
[16] 姚武. 纤维混凝土的低温性能和冻融损伤机理研究[J]. 冰川冻土, 2005, 27(4): 545-549. DOI:10.3969/j.issn.1000-0240.2005.04.012.
Yao W. Property of fiber reinforced concrete at low temperature and its damage mechanism under freezing-thawing cycles[J]. Journal of Glaciology and Geocryology, 2005, 27(4): 545-549. DOI:10.3969/j.issn.1000-0240.2005.04.012. (in Chinese)
[17] 武海荣, 金伟良, 延永东, 等. 混凝土冻融环境区划与抗冻性寿命预测[J]. 浙江大学学报(工学版), 2012, 46(4): 650-657.
  Wu H R, Jin W L, Yan Y D, et al. Environmental zonation and life prediction of concrete in frost environments[J]. Journal of Zhejiang University(Engineering Science), 2012, 46(4): 650-657.(in Chinese)

相似文献/References:

[1]江心怡,薛烽,赵阔.Mg-Al-RE系镁合金组织与性能[J].东南大学学报(自然科学版),2010,40(3):646.[doi:10.3969/j.issn.1001-0505.2010.03.040]
 Jiang Xinyi,Xue Feng,Zhao Kuo.Microstructures and mechanical properties of Mg-Al-RE alloys[J].Journal of Southeast University (Natural Science Edition),2010,40(2):646.[doi:10.3969/j.issn.1001-0505.2010.03.040]
[2]程洁,周啸,李俐军,等.冠脉支架的多功能体外力学性能测试装置及实验研究[J].东南大学学报(自然科学版),2010,40(2):341.[doi:10.3969/j.issn.1001-0505.2010.02.024]
 Cheng Jie,Zhou Xiao,Li Lijun,et al.In-vitro test apparatus and experimental study of mechanics properties of coronary stents[J].Journal of Southeast University (Natural Science Edition),2010,40(2):341.[doi:10.3969/j.issn.1001-0505.2010.02.024]
[3]吴晓婧,薛烽,周健,等.Cu,Ni对Sn-Zn-Al无铅焊料组织和性能的影响[J].东南大学学报(自然科学版),2009,39(3):623.[doi:10.3969/j.issn.1001-0505.2009.03.038]
 Wu Xiaojing,Xue Feng,Zhou Jian,et al.Effect of Cu and Ni on microstructure and properties of Sn-Zn-Al lead-free solders[J].Journal of Southeast University (Natural Science Edition),2009,39(2):623.[doi:10.3969/j.issn.1001-0505.2009.03.038]
[4]周健,王常亮,薛烽.Sn-Zn钎料Cu接头的界面反应及力学性能[J].东南大学学报(自然科学版),2009,39(3):615.[doi:10.3969/j.issn.1001-0505.2009.03.037]
 Zhou Jian,Wang Changliang,Xue Feng.Interfacial reaction and joint strength of Sn-Zn solder/Cu[J].Journal of Southeast University (Natural Science Edition),2009,39(2):615.[doi:10.3969/j.issn.1001-0505.2009.03.037]
[5]张秀芝,孙伟,张倩倩,等.混杂钢纤维增强超高性能水泥基材料力学性能分析[J].东南大学学报(自然科学版),2008,38(1):156.[doi:10.3969/j.issn.1001-0505.2008.01.030]
 Zhang Xiuzhi,Sun Wei,Zhang Qianqian,et al.Mechanical behaviors of hybrid steel fiber reinforced ultra-high performance cementitious composites[J].Journal of Southeast University (Natural Science Edition),2008,38(2):156.[doi:10.3969/j.issn.1001-0505.2008.01.030]
[6]付小琴,周健,孙扬善,等.Sn-8Zn-3Bi-P无铅钎料微观组织及性能[J].东南大学学报(自然科学版),2006,36(5):831.[doi:10.3969/j.issn.1001-0505.2006.05.030]
 Fu Xiaoqin,Zhou Jian,Sun Yangshan,et al.Effect of phosphorus on microstructure and properties of Sn-8Zn-3Bi lead-free solder[J].Journal of Southeast University (Natural Science Edition),2006,36(2):831.[doi:10.3969/j.issn.1001-0505.2006.05.030]
[7]左晓宝,等.一种超弹性SMA复合阻尼器的设计与试验[J].东南大学学报(自然科学版),2004,34(4):459.[doi:10.3969/j.issn.1001-0505.2004.04.009]
 Zuo Xiaobao,Li Aiqun,et al.Design and experimental investigation of superelastic SMA damper[J].Journal of Southeast University (Natural Science Edition),2004,34(2):459.[doi:10.3969/j.issn.1001-0505.2004.04.009]
[8]魏宇,孙扬善,樊泉,等.TiC强化Cr12MoV基复合材料的组织和性能分析[J].东南大学学报(自然科学版),2003,33(4):463.[doi:10.3969/j.issn.1001-0505.2003.04.020]
 Wei Yu,Sun Yangshan,Fan Quan,et al.Microstructure and mechanical properties of TiC reinforced Cr12MoV composite[J].Journal of Southeast University (Natural Science Edition),2003,33(2):463.[doi:10.3969/j.issn.1001-0505.2003.04.020]
[9]闵学刚,孙扬善,杜温文,等.Ca,Si和RE对AZ91合金的组织和性能的影响[J].东南大学学报(自然科学版),2002,32(3):409.[doi:10.3969/j.issn.1001-0505.2002.03.022]
 Min Xuegang,Sun Yangshan,Du Wenwen,et al.Effects of Ca,Si and RE additions on the microstructures and mechanical properties of AZ91 based alloys[J].Journal of Southeast University (Natural Science Edition),2002,32(2):409.[doi:10.3969/j.issn.1001-0505.2002.03.022]
[10]杨春,蔡健,张学文,等.劲性钢管混凝土组合柱轴压性能试验研究[J].东南大学学报(自然科学版),2002,32(5):715.[doi:10.3969/j.issn.1001-0505.2002.05.008]
 Yang Chun,Cai Jian,Zhang Xuewen,et al.Experimental research on the composite column with cone of concrete filled steel tube under axial loads[J].Journal of Southeast University (Natural Science Edition),2002,32(2):715.[doi:10.3969/j.issn.1001-0505.2002.05.008]

备注/Memo

备注/Memo:
收稿日期: 2018-10-19.
作者简介: 杨才千(1974—),男,博士,教授,博士生导师,ycqjxx@hotmail.com.
基金项目: 国家重点研发计划资助项目(2017YFC0504505)、湖南省重点研发计划资助项目(2018WK2111)、湖南省创新创业技术投资资助项目(S2017GXJSTZ0102).
引用本文: 杨才千,刘飞,潘勇,等.冻融循环作用下聚乙烯醇纤维增强快硬混凝土的力学性能[J].东南大学学报(自然科学版),2019,49(2):334-339. DOI:10.3969/j.issn.1001-0505.2019.02.019.
更新日期/Last Update: 2019-03-20