[1]柯世堂,徐璐.考虑中尺度台风效应的大型风力机体系气动性能分析[J].东南大学学报(自然科学版),2019,49(2):340-347.[doi:10.3969/j.issn.1001-0505.2019.02.020]
 Ke Shitang,Xu Lu.Analysis on aerodynamic performance of large wind turbine system considering mesoscale typhoon effect[J].Journal of Southeast University (Natural Science Edition),2019,49(2):340-347.[doi:10.3969/j.issn.1001-0505.2019.02.020]
点击复制

考虑中尺度台风效应的大型风力机体系气动性能分析()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
49
期数:
2019年第2期
页码:
340-347
栏目:
能源与动力工程
出版日期:
2019-03-20

文章信息/Info

Title:
Analysis on aerodynamic performance of large wind turbine system considering mesoscale typhoon effect
作者:
柯世堂徐璐
南京航空航天大学土木工程系, 南京 210016; 南京航空航天大学江苏省风力机设计高技术研究重点实验室, 南京 210016
Author(s):
Ke Shitang Xu Lu
Department of Civil Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
Jiangsu Key Laboratory of Hi-Tech Research for Wind Turbine Design, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
关键词:
风力机 中小尺度嵌套 大涡模拟 停机位置 气动性能
Keywords:
wind turbine meso- and micro-scale nesting large eddy simulation stopping position aerodynamic performance
分类号:
TK83
DOI:
10.3969/j.issn.1001-0505.2019.02.020
摘要:
为系统研究台风作用下风力机体系的气动性能与风效应特性,引入考虑真实台风场强变异性和衰减效应的中尺度天气预报模式对台风“鹦鹉”进行高时空分辨率模拟.基于最小海平面气压追踪的台风中心路径与实测路径的对比结果,验证模拟的有效性.以中国东南沿海地区某风电厂5 MW水平轴风力机为对象,结合小尺度CFD大涡模拟技术对叶片单个旋转周期不同停机位置工况进行三维非定常数值模拟.结果表明,采用WRF模式可以有效模拟近地面台风风场,拟合的台风剖面指数为0.076.台风下叶片和塔架的脉动和极值风压系数显著增大,最大增幅达29%.台风作用下叶片与塔架完全重合时为最不利情况,旋转至上叶片完全重合时安全余度最大.
Abstract:
To systematically study the aerodynamic performance and wind effect characteristics of the wind turbine system under the action of typhoon, a mesoscale weather forecast model considering the actual typhoon field strength variability and the attenuation effect was introduced to simulate the typhoon parrot with high spatial and temporal resolution. Based on the comparison between the simulated typhoon center path and the measured one, the validity of the medium-scale typhoon parrot simulation was verified. By taking the 5 MW horizontal axis wind turbine of a wind power plant in southeast coastal area of China as an object, the three-dimensional unsteady numerical simulation was carried out at different stopping positions of the blade in a single rotation cycle by using the CFD(computational fluid dynamics)large-eddy simulation technology. The results show that the wind field of near-surface typhoons can be effectively simulated by using the WRF(weather research and forecasting)model, and the fitting typhoon profile index is 0.076. The pulsation and the extreme wind pressure coefficient of blades and towers increase significantly, and the maximum increase reaches 29%. Under the action of typhoon, it is the most unfavorable when the lower blade completely coincides with the tower frame. When the rotating top blade completely coincides with the tower frame, the safety margin is the largest.

参考文献/References:

[1] 陈斌, 王凯, 刘健, 等. 0608号台风“桑美”过境前后对长江口外海域环境的影响[J]. 地球科学, 2016, 41(8): 1402-1412. DOI:10.3799/dqkx.2016.111.
Chen B, Wang K, Liu J, et al. The impact of super typhoon Saomai(0608)on the offshore environment near the yangtze estuary[J]. Earth Science, 2016, 41(8): 1402-1412. DOI:10.3799/dqkx.2016.111. (in Chinese)
[2] 中国国家标准化管理委员会. GB/T 25383—2010 风力发电机组-风轮叶片[S]. 北京: 中国标准出版社, 2010.
[3] 中国船级社. CCS—2008 中国船级社规范-风力发电机组规范[S]. 北京: 人民交通出版社, 2008.
[4] Carvalho D, Rocha A, Gómez-Gesteira M, et al. WRF wind simulation and wind energy production estimates forced by different reanalyses: Comparison with observed data for Portugal[J]. Applied Energy, 2014, 117: 116-126. DOI:10.1016/j.apenergy.2013.12.001.
[5] Maruyama T, Tomokiyo E, Maeda J. Simulation of strong wind field by non-hydrostatic mesoscale model and its applicability for wind hazard assessment of buildings and houses[J]. Hydrological Research Letters, 2010, 4: 40-44. DOI:10.3178/hrl.4.40.
[6] Guan X, Wang H D, Sun Z L, et al. Based on theory of random wind load wind turbine transmission system structure reliability analysis[J]. International Journal of Control and Automation, 2015, 8(10): 199-212. DOI:10.14257/ijca.2015.8.10.20.
[7] 沈炼, 韩艳, 董国朝, 等. 基于WRF的山区峡谷桥址风场数值模拟[J]. 中国公路学报, 2017, 30(5): 104-113. DOI:10.3969/j.issn.1006-3897.2017.05.014.
Shen L, Han Y, Dong G C, et al. Numerical simulation of wind field on bridge site located in mountainous area and gorge based on WRF[J]. China Journal of Highway and Transport, 2017, 30(5): 104-113. DOI:10.3969/j.issn.1006-3897.2017.05.014. (in Chinese)
[8] Lundquist K A, Chow F K, Lundquist J K. An immersed boundary method enabling large-eddy simulations of flow over complex terrain in the WRF model[J]. Monthly Weather Review, 2012, 140(12): 3936-3955.DOI: 10.1175/mwr-d-11-00311.1.
[9] Dimitrov N, Natarajan A, Mann J. Effects of normal and extreme turbulence spectral parameters on wind turbine loads[J].Renewable Energy, 2017, 101: 1180-1193. DOI:10.1016/j.renene.2016.10.001.
[10] 李军, 宋晓萍, 程雪玲, 等. 从天气尺度到风力机尺度大气运动的动力模拟[J]. 太阳能学报, 2015, 36(4): 806-811. DOI:10.3969/j.issn.0254-0096.2015.04.006.
Li J, Song X P, Cheng X L, et al. Dynamical simulation of wind flow from synoptic scale to turbine scale[J].Acta Energiae Solaris Sinica, 2015, 36(4): 806-811. DOI:10.3969/j.issn.0254-0096.2015.04.006. (in Chinese)
[11] 柯世堂, 余玮, 王同光. 基于大涡模拟考虑叶片停机位置大型风力机风振响应分析[J]. 振动与冲击, 2017, 36(7): 92-98,163. DOI:10.13465/j.cnki.jvs.2017.07.014.
Ke S T, Yu W, Wang T G. Wind-included vibration response analysis for a large wind turbine blade-tower system based on large eddy simulation[J].Journal of Vibration and Shock, 2017, 36(7): 92-98,163. DOI:10.13465/j.cnki.jvs.2017.07.014. (in Chinese)
[12] 余玮, 柯世堂, 王同光. 叶片停机位置对风力机塔架绕流及尾流特性影响[J]. 振动与冲击, 2017, 36(18): 207-213,230. DOI:10.13465/j.cnki.jvs.2017.18.031.
Yu W, Ke S T, Wang T G. Impact of blade stopped positions on the flow around wind turbine tower and its wake performance[J].Journal of Vibration and Shock, 2017, 36(18): 207-213,230. DOI:10.13465/j.cnki.jvs.2017.18.031. (in Chinese)
[13] Ke S T, Xu L, Ge Y J. The aerostatic response and stability performance of a wind turbine tower-blade coupled system considering blade shutdown position[J]. Wind and Structures, 2017, 25(6):507-535.
[14] 中国工程建设标准化协会. GB 50009—2012 建筑结构荷载规范[S]. 北京: 中国建筑工业出版社, 2012.

相似文献/References:

[1]苏春,陈武.考虑部件经济相关性的风力机系统状态维修优化[J].东南大学学报(自然科学版),2016,46(5):1007.[doi:10.3969/j.issn.1001-0505.2016.05.019]
 Su Chun,Chen Wu.Optimization of condition-based maintenance for wind turbine system considering economic dependence among components[J].Journal of Southeast University (Natural Science Edition),2016,46(2):1007.[doi:10.3969/j.issn.1001-0505.2016.05.019]
[2]苏春,胡照勇,郑玉巧.基于可用度约束的风力机单部件顺序维修优化[J].东南大学学报(自然科学版),2019,49(1):110.[doi:10.3969/j.issn.1001-0505.2019.01.016]
 Su Chun,Hu Zhaoyong,Zheng Yuqiao.Single part sequential maintenance optimization for wind turbines based on availability constraint[J].Journal of Southeast University (Natural Science Edition),2019,49(2):110.[doi:10.3969/j.issn.1001-0505.2019.01.016]

备注/Memo

备注/Memo:
收稿日期: 2018-10-06.
作者简介: 柯世堂(1982—),男,博士,教授,博士生导师,keshitang@163.com.
基金项目: 国家自然科学基金资助项目(51878351, 51761165022,U1733129)、江苏省自然科学基金优秀青年基金(BK20160083)、江苏省“六大人才高峰”高层次人才计划资助项目(JZ-026).
引用本文: 柯世堂,徐璐.考虑中尺度台风效应的大型风力机体系气动性能分析[J].东南大学学报(自然科学版),2019,49(2):340-347. DOI:10.3969/j.issn.1001-0505.2019.02.020.
更新日期/Last Update: 2019-03-20