[1]丁建文,万星,冯旭松,等.高含水率疏浚淤泥固化土的压缩模型[J].东南大学学报(自然科学版),2019,49(2):369-374.[doi:10.3969/j.issn.1001-0505.2019.02.024]
 Ding Jianwen,Wan Xing,Feng Xusong,et al.Compression model for solidified soil of dredged clays with high water content[J].Journal of Southeast University (Natural Science Edition),2019,49(2):369-374.[doi:10.3969/j.issn.1001-0505.2019.02.024]
点击复制

高含水率疏浚淤泥固化土的压缩模型()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
49
期数:
2019年第2期
页码:
369-374
栏目:
土木工程
出版日期:
2019-03-20

文章信息/Info

Title:
Compression model for solidified soil of dredged clays with high water content
作者:
丁建文1万星1冯旭松2钱森1吉锋12
1东南大学交通学院, 南京 210096; 2南水北调东线江苏水源有限责任公司, 南京 210029
Author(s):
Ding Jianwen1 Wan Xing1 Feng Xusong2 Qian Sen1 Ji Feng12
1 School of Transportation, Southeast University, Nanjing 210096, China
2 Jiangsu Water Resources Co., Ltd., The Water Diversion Project from South to North in China, Nanjing 210029, China
关键词:
疏浚淤泥固化土 结构屈服 压缩性状 压缩模型 结构破损参数
Keywords:
solidified soil of dredged clays structure yield compressive behavior compression model structure damage parameter
分类号:
TU449
DOI:
10.3969/j.issn.1001-0505.2019.02.024
摘要:
基于扰动状态概念和重塑土固有压缩特性,建立了高含水率疏浚淤泥固化土的压缩模型,并通过一维压缩试验对模型进行了验证.模型预测结果与试验数据吻合较好,表明所提出的压缩模型能够较好地描述淤泥固化土在一维压缩条件下的力学响应.基于试验和拟合分析,得出了淤泥固化土结构破损参数的取值范围为0.2~2.0,结果表明,随着固化材料掺量的增加和淤泥初始含水率的降低,固化土结构破损参数渐趋减小.探讨了结构破损参数与破损速率的变化规律,结构破损参数越大,结构破损速率越快.建立的压缩模型可以描述疏浚淤泥固化土屈服前后的压缩变形特征,特别是可以刻画固化土在结构屈服后渐进破坏的过程,为疏浚淤泥固化土的压缩分析和沉降计算提供了一种有效方法.
Abstract:
Based on the disturbed state concept and the intrinsic compression theory proposed by Desai and Burland, respectively, a compression model was presented for the solidified soil of dredged clays with high water content. The validity of the proposed compression model verified through one-dimensional compression experiments, the calculated results were in agreement with the laboratory experimental results, indicating that the proposed compression model could describe the mechanical response of the solidified soil under the condition of one-dimensional compression. According to the experiments and fitting analysis, the value of structure damage parameter ranged from 0.2 to 2.0. The results show that the value of the structure damage parameter is smaller with more amount of solidified materials and lower initial water content of dredged clays. The variation law of the structure damage parameter and the damage rate was discussed. The larger the value of structure damage parameter, the faster the damage rate of the structure. The compression model is used to describe the compressive deformation characteristics both at pre-yield and at post-yield states, especially it can depict the process of the progressive failure after structure yield. It provides an effective way to analyze and calculate the settlement for solidified soil of dredged clays.

参考文献/References:

[1] 丁建文, 洪振舜, 刘松玉. 疏浚淤泥流动固化土的三轴剪切试验研究[J]. 东南大学学报(自然科学版), 2011, 41(5): 1070-1074. DOI:10.3969/j.issn.1001-0505.2011.05.033.
Ding J W, Hong Z S, Liu S Y. Triaxial shear test of flow-solidified soil of dredged clays[J]. Journal of Southeast University(Natural Science Edition), 2011, 41(5): 1070-1074. DOI:10.3969/j.issn.1001-0505.2011.05.033. (in Chinese)
[2] Tang Y X, Miyazaki Y, Tsuchida T. Practices of reused dredgings by cement treatment.[J].Soils and Foundations, 2001, 41(5): 129-143. DOI:10.3208/sandf.41.5_129.
[3] Kamon M, Jeoung J, Inui T. Alkalinity control properties of the solidified/stabilized sludge by a low alkalinity additive[J]. Soils and Foundations, 2005, 45(1): 87-98. DOI:10.1016/j.soildyn.2004.08.005.
[4] Zhu W, Zhang C L, Chiu A C F. Soil-water transfer mechanism for solidified dredged materials[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2007, 133(5): 588-598. DOI:10.1061/(asce)1090-0241(2007)133:5(588).
[5] Siham K, Fabrice B, Edine A N, et al. Marine dredged sediments as new materials resource for road construction[J]. Waste Management, 2008, 28(5): 919-928. DOI:10.1016/j.wasman.2007.03.027.
[6] 丁建文, 吴学春, 李辉, 等. 疏浚淤泥固化土的压缩特性与结构屈服应力[J]. 工程地质学报, 2012, 20(4): 627-632. DOI:10.3969/j.issn.1004-9665.2012.04.021.
Ding J W, Wu X C, Li H, et al. Compression properties and structure yield stress for solidified soil composing of dredged clays[J]. Journal of Engineering Geology, 2012, 20(4): 627-632. DOI:10.3969/j.issn.1004-9665.2012.04.021. (in Chinese)
[7] Ding J W, Feng X S, Xu G Z, et al. Strength properties and microstructural characteristics of stabilized dredged materials at high water contents[J]. Journal of Testing and Evaluation, 2019, 47(3): 20180049. DOI:10.1520/jte20180049.
[8] Burland J B. On the compressibility and shear strength of natural clays[J]. Géotechnique, 1990, 40(3): 329-378. DOI:10.1680/geot.1990.40.3.329.
[9] 沈珠江. 软土工程特性和软土地基设计[J]. 岩土工程学报, 1998, 20(1): 100-111.
  Shen Z J. Engineering properties of soft soils and design of soft ground[J]. Chinese Journal of Geotechnical Engineering, 1998, 20(1): 100-111.(in Chinese)
[10] 丁建文. 高含水率疏浚淤泥流动固化土的力学性状及微观结构特征研究 [D]. 南京: 东南大学, 2011.
  Ding J W. Mechanical properties and microstructure characteristics of solidified dredged clays at high water content [D]. Nanjing: Southeast University, 2011.(in Chinese)
[11] Desai C S, Toth J. Disturbed state constitutive modeling based on stress-strain and nondestructive behavior[J]. International Journal of Solids & Structures, 1996, 33(11): 1619-1650. DOI: 10.1016/0020-7683(95)00115-8.
[12] Desai C S. Mechanics of materials and interfaces: The disturbed state concept [M]. Boca Raton, USA: CRC Press, 2001:77-78.
[13] Liu M D, Carter J P. Virgin compression of structured soils[J].Géotechnique, 1999, 49(1): 43-57. DOI:10.1680/geot.1999.49.1.43.
[14] Liu M D, Carter J P.Modelling the destructuring of soils during virgin compression[J]. Géotechnique, 2000, 50(4): 479-483. DOI:10.1680/geot.2000.50.4.479.
[15] 刘维正, 石名磊, 缪林昌. 基于扰动状态概念的结构性土压缩特性分析[J]. 岩土力学, 2010, 31(11): 3475-3480. DOI:10.3969/j.issn.1000-7598.2010.11.020.
Liu W Z, Shi M L, Miao L C. Analysis of compressibility of structural soils based on disturbed state concept[J]. Rock and Soil Mechanics, 2010, 31(11): 3475-3480. DOI:10.3969/j.issn.1000-7598.2010.11.020. (in Chinese)
[16] Liu M D, Carter J P, Desai C S, et al. Analysis of the compression of structured soils using the disturbed state concept[J].International Journal for Numerical and Analytical Methods in Geomechanics, 2000, 24(8): 723-735. DOI:10.1002/1096-9853(200007)24:8723::aid-nag92>3.0.co;2-v.
[17] Liu M D, Carter J P, Desai C S. Modeling compression behavior of structured geomaterials[J].International Journal of Geomechanics, 2003, 3(2): 191-204. DOI:10.1061/(asce)1532-3641(2003)3:2(191).
[18] Zeng L L, Hong Z S, Cui Y J. Determining the virgin compression lines of reconstituted clays at different initial water contents[J].Canadian Geotechnical Journal, 2015, 52(9): 1408-1415. DOI:10.1139/cgj-2014-0172.
[19] 刘恩龙, 沈珠江. 结构性土压缩曲线的数学模拟[J]. 岩土力学, 2006, 27(4): 615-620. DOI:10.3969/j.issn.1000-7598.2006.04.022.
Liu E L, Shen Z J. Modeling compression of structured soils[J]. Rock and Soil Mechanics, 2006, 27(4): 615-620. DOI:10.3969/j.issn.1000-7598.2006.04.022. (in Chinese)
[20] Hong Z S, Zeng L L, Cui Y J, et al. Compression behaviour of natural and reconstituted clays[J]. Géotechnique, 2012, 62(4): 291-301. DOI:10.1680/geot.10.p.046.
[21] Qian S, Shi J, Ding J W. Modified Liu-Carter compression model for natural clays with various initial water contents[J]. Advances in Civil Engineering, 2016, 2016: 1-8. DOI:10.1155/2016/1691605.
[22] Tremblay H, Leroueil S, Locat J. Mechanical improvement and vertical yield stress prediction of clayey soils from eastern Canada treated with lime or cement[J]. Canadian Geotechnical Journal, 2001, 38(3): 567-579. DOI:10.1139/t00-119.
[23] Chiu C F, Zhu W, Zhang C L. Yielding and shearbehaviour of cement-treated dredged materials[J]. Engineering Geology, 2009, 103(1/2): 1-12. DOI:10.1016/j.enggeo.2008.07.007.
[24] Hight D W, Bond A J, Legge J D.Characterization of the Bothkennaar clay: An overview[J]. Géotechnique, 1992, 42(2): 303-347. DOI:10.1680/geot.1992.42.2.303.
[25] Burland J B, Rampello S, Georgiannou V N,et al. A laboratory study of the strength of four stiff clays[J]. Géotechnique, 1996, 46(3): 491-514. DOI:10.1680/geot.1996.46.3.491.
[26] Wood D M.Soil behaviour and critical state soil mechanics [M]. Cambridge: Cambridge University Press, 1990:139-150.
[27] Butterfield R. A natural compression law for soils(an advance on e-log p′)[J]. Géotechnique, 1979, 29(4): 469-480. DOI:10.1680/geot.1979.29.4.469.
[28] Hong Z S, Yin J, Cui Y J. Compression behaviour of reconstituted soils at high initial water contents[J].Géotechnique, 2010, 60(9): 691-700. DOI:10.1680/geot.09.p.059.

相似文献/References:

[1]丁建文,洪振舜,刘松玉.疏浚淤泥流动固化土的三轴剪切试验研究[J].东南大学学报(自然科学版),2011,41(5):1070.[doi:10.3969/j.issn.1001-0505.2011.05.033]
 Ding Jianwen,Hong Zhenshun,Liu Songyu.Triaxial shear test of flow-solidified soil of dredged clays[J].Journal of Southeast University (Natural Science Edition),2011,41(2):1070.[doi:10.3969/j.issn.1001-0505.2011.05.033]

备注/Memo

备注/Memo:
收稿日期: 2018-09-27.
作者简介: 丁建文(1975—),男,博士,副教授,jwding@seu.edu.cn.
基金项目: 国家自然科学基金资助项目(51378118)、“十二五”国家科技支撑资助项目(2015BAB07B06)、水利部公益性行业专项经费资助项目(201401006-2).
引用本文: 丁建文,万星,冯旭松,等.高含水率疏浚淤泥固化土的压缩模型[J].东南大学学报(自然科学版),2019,49(2):369-374. DOI:10.3969/j.issn.1001-0505.2019.02.024.
更新日期/Last Update: 2019-03-20