[1]邵家虎,高建明,赵亚松.再生黏土砖粉-水泥胶凝体系的特性[J].东南大学学报(自然科学版),2019,49(2):375-379.[doi:10.3969/j.issn.1001-0505.2019.02.025]
 Shao Jiahu,Gao Jianming,Zhao Yasong.Characteristics of recycled clay brick powder-cement cementitious system[J].Journal of Southeast University (Natural Science Edition),2019,49(2):375-379.[doi:10.3969/j.issn.1001-0505.2019.02.025]
点击复制

再生黏土砖粉-水泥胶凝体系的特性()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
49
期数:
2019年第2期
页码:
375-379
栏目:
材料科学与工程
出版日期:
2019-03-20

文章信息/Info

Title:
Characteristics of recycled clay brick powder-cement cementitious system
作者:
邵家虎高建明赵亚松
东南大学材料科学与工程学院, 南京 211189; 东南大学江苏省土木工程材料重点实验室, 南京 211189
Author(s):
Shao Jiahu Gao Jianming Zhao Yasong
School of Materials Science and Engineering, Southeast University, Nanjing 211189, China
Jiangsu Key Laboratory of Construction Materials, Southeast University, Nanjing 211189, China
关键词:
再生黏土砖粉 水化热 水化产物 热重 复合胶凝材料
Keywords:
recycled clay brick powder hydration heat hydration product thermogravimetry composite cementitious material
分类号:
TU526
DOI:
10.3969/j.issn.1001-0505.2019.02.025
摘要:
为了实现废弃黏土砖的再生利用,通过物理球磨的方法制备出再生黏土砖粉,将其作为辅助性胶凝材料来取代部分水泥制备复合水泥浆体.采用量热仪、X射线衍射仪和热重分析仪研究了黏土砖粉掺量对复合胶凝材料体系的水化热、水化产物和热重性能的影响.实验结果表明:随着黏土砖粉掺量的增加,水泥水化累积放热量不断降低,当黏土砖粉掺量为40%时胶凝体系的3 d水化累积放热量可降低35.39%.XRD测试结果证明,随着养护龄期的增长,Ca(OH)2逐渐与黏土砖粉中活性SiO2和Al2O3发生火山灰反应,在龄期180 d时Ca(OH)2的特征峰强度损失更大.DSC-TG定量分析确定了在90 d龄期后,黏土砖粉反应消耗了更多的Ca(OH)2,使得胶凝体系中Ca(OH)2含量减少.
Abstract:
To achieve the recycling utilization of waste clay bricks, recycled clay brick powder prepared by mechanical mill was used as a supplementary cementitious material to replace partial cement to prepare cement pastes. The hydration characteristics of the cementitious system were systematically studied by measuring the heat evolution, hydration products and thermogravimetric analysis of blended pastes with the calorimeter, X-ray diffraction(XRD)and differential scanning calorimetry-thermogravimetric analysis(DSC-TG), respectively. The experimental results show that the total heat release of the cementitious system decreases gradually with the increase of the amount of clay brick powder(CBP). The content of CBP is 40%, the cumulative hydration heat of blended samples is decreased by 35.39% compared with the controller. The testing results by the XRD demonstrate that active SiO2 and Al2O3 in CBP react with Ca(OH)2 gradually with the increase of the curing time increasing, the intensity loss of characteristic peak of CH is greater at 180 d. DSC-TG analysis can quantitatively conclude that the pozzolanic reaction of CBP consumes more Ca(OH)2 after 90 d, resulting in the decrease of Ca(OH)2 content in the cementitious system.

参考文献/References:

[1] 国家发展改革委.中国资源综合利用年度报告[J]. 中国经贸等刊,2014(30):49-56.DOI:10.3969/j.issn.1007-9777.2014.30.016.
[2] Cheng H L. Reuse research progress on waste clay brick[J]. Procedia Environmental Sciences, 2016, 31: 218-226. DOI:10.1016/j.proenv.2016.02.029.
[3] 薛翠真, 申爱琴, 郭寅川, 等. 碱激发和复合激发下建筑垃圾砖粉活性研究[J]. 材料导报, 2016,30(10): 130-134.
  Xue C Z, Shen A Q, Guo Y C, et al. Activity of construction waste brick powder under alkali and compound modifications[J]. Materials Review, 2016, 30(10): 130-134.(in Chinese)
[4] Bektas F, Wang K, Ceylan H. Effects of crushed clay brick aggregate on mortar durability[J].Construction and Building Materials, 2009, 23(5): 1909-1914. DOI:10.1016/j.conbuildmat.2008.09.006.
[5] 徐如林. 建筑垃圾粉料的活性激发及其应用[D]. 武汉: 武汉理工大学, 2011.
  Xu R L. Activation and application of construction waste powders[D]. Wuhan: Wuhan University of Technology, 2011.(in Chinese)
[6] 韩涛, 靳秀芝. 废黏土砖再生胶凝材料评价及应用[J]. 建材技术与应用, 2015(3): 10-12. DOI:10.3969/j.issn.1009-9441.2015.03.004.
Han T, Jin X Z. Evaluation and application of waste fired clay brick renewable gelled material[J]. Research & Application of Building Materials, 2015(3): 10-12. DOI:10.3969/j.issn.1009-9441.2015.03.004. (in Chinese)
[7] 郑丽. 废黏土砖粉混凝土的性能研究[D]. 济南:山东大学, 2012.
  Zhen L. Properties of concrete with recycled clay-brick-powder[D].Jinan:Shandong University, 2012.(in Chinese)
[8] Heidari A, Hasanpour B. Effects of waste bricks powder of gachsaran company as a pozzolanic material in concrete [J]. Asian Journal of Civil Engineering, 2013, 14(5):755-763.
[9] Lin K L, Chen B Y, Chiou C S, et al. Waste brick’s potential for use as a pozzolan in blended Portland cement[J]. Waste Management & Research, 2010, 28(7): 647-652. DOI:10.1177/0734242x09355853.
[10] K?rg?z M S. Strength gain mechanism for green mortar substituted marble powder and brick powder for Portland cement[J]. European Journal of Environmental and Civil Engineering, 2016, 20(sup1): s38-s63. DOI:10.1080/19648189.2016.1246691.
[11] Schackow A, Stringari D, Senff L, et al. Influence of fired clay brick waste additions on the durability of mortars[J].Cement and Concrete Composites, 2015, 62: 82-89. DOI:10.1016/j.cemconcomp.2015.04.019.
[12] KimY M, Hong S H, Kim H. Synthesis and hydration characteristics of alinite cement[J]. Journal of the American Ceramic Society, 2002, 85(8): 1941-1946. DOI:10.1111/j.1151-2916.2002.tb00385.x.
[13] Zhang H, Wang W B, Li Q L, et al. A starch-based admixture for reduction of hydration heat in cement composites[J]. Construction and Building Materials, 2018, 173: 317-322. DOI:10.1016/j.conbuildmat.2018.03.199.
[14] Naceri A, Hamina M C. Use of waste brick as a partial replacement of cement in mortar[J]. Waste Management, 2009, 29(8): 2378-2384. DOI:10.1016/j.wasman.2009.03.026.
[15] Tashima M M, Akasaki J L, Castaldelli V N, et al. New geopolymeric binder based on fluid catalytic cracking catalyst residue(FCC)[J]. Materials Letters, 2012, 80: 50-52. DOI:10.1016/j.matlet.2012.04.051.
[16] Kubiliute R, Kaminskas R, Kazlauskaite A. Mineral wool production waste as an additive for Portland cement[J].Cement and Concrete Composites, 2018, 88: 130-138. DOI:10.1016/j.cemconcomp.2018.02.003.

相似文献/References:

[1]阮静,叶见曙,谢发祥,等.高强度混凝土水化热的研究[J].东南大学学报(自然科学版),2001,31(3):53.[doi:10.3969/j.issn.1001-0505.2001.03.013]
 Ruan Jing,Ye Jianshu,Xie Faxiang,et al.Study on Heat of Hydration on High Strength Concrete[J].Journal of Southeast University (Natural Science Edition),2001,31(2):53.[doi:10.3969/j.issn.1001-0505.2001.03.013]
[2]熊文,尤吉,房涛,等.风环境对大体积混凝土桥塔施工水化热的影响分析[J].东南大学学报(自然科学版),2015,45(5):941.[doi:10.3969/j.issn.1001-0505.2015.05.021]
 Xiong Wen,You Ji,Fang Tao,et al.Influence analysis of wind environments on hydration heat of massive concrete pylon construction[J].Journal of Southeast University (Natural Science Edition),2015,45(2):941.[doi:10.3969/j.issn.1001-0505.2015.05.021]

备注/Memo

备注/Memo:
收稿日期: 2018-09-15.
作者简介: 邵家虎(1993—),男,硕士生;高建明(联系人),男,博士,教授,jmgao@seu.edu.cn.
基金项目: 国家自然科学基金资助项目(51578141)、国家重点基础研究发展计划(973计划)资助项目(2015CB655102)、国家重点研发计划资助项目(2016YFE0118200).
引用本文: 邵家虎,高建明,赵亚松.再生黏土砖粉-水泥胶凝体系的特性[J].东南大学学报(自然科学版),2019,49(2):375-379. DOI:10.3969/j.issn.1001-0505.2019.02.025.
更新日期/Last Update: 2019-03-20