[1]陆建,程泽阳.道路交通网络安全风险辨识研究进展[J].东南大学学报(自然科学版),2019,49(2):404-412.[doi:10.3969/j.issn.1001-0505.2019.02.029]
 Lu Jian,Cheng Zeyang.Research and development of road traffic network security risk identification[J].Journal of Southeast University (Natural Science Edition),2019,49(2):404-412.[doi:10.3969/j.issn.1001-0505.2019.02.029]
点击复制

道路交通网络安全风险辨识研究进展()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
49
期数:
2019年第2期
页码:
404-412
栏目:
交通运输工程
出版日期:
2019-03-20

文章信息/Info

Title:
Research and development of road traffic network security risk identification
作者:
陆建程泽阳
东南大学城市智能交通江苏省重点实验室, 南京 211189; 东南大学现代交通技术江苏高校协同创新中心, 南京 211189; 东南大学交通学院, 南京 211189
Author(s):
Lu Jian Cheng Zeyang
Jiangsu Key Laboratory of Urban ITS, Southeast University, Nanjing 211189, China
Jiangsu Province Collaborative Innovation Center of Modern Urban Traffic Technologies, Southeast University, Nanjing 211189, China
School of Transportation, Southeast University, Nanjing 211189, China
关键词:
安全风险辨识 态势分析 交通网络 风险评估 预警
Keywords:
security risk identification state analysis traffic network risk assessment warning
分类号:
U491
DOI:
10.3969/j.issn.1001-0505.2019.02.029
摘要:
道路交通网络安全风险辨识是交通安全管理的重要环节.从多源异构交通信息采集与处理、交通动态演化规律辨识与态势分析、交通风险评估及预警3个层面对道路网络安全风险辨识领域的研究方法、模型及存在不足进行概括,并进行了实地调查.总结发现:多源交通信息采集主要以2种或3种交通传感器数据为主,信息覆盖面低;交通态势发展分析仍局限在短时交通状态预测和估计上,缺少对广域时间尺度上的研究;多数安全风险评估建立在事故数据分析的基础上,对事故前的风险点辨识及定量评估有待提升.另外,国内城市道路交通结构复杂,机非冲突、人非冲突现象普遍存在,一定程度上阻碍了交通安全风险的有效辨识.最后,结合国内外最新技术提出了未来的研究发展方向.
Abstract:
The security risk identification in road traffic network is the key of traffic safety management. The research methods, models, and deficiencies that related to road network risk identification were summarized from three levels: multi-source traffic information acquisition and processing; dynamic traffic evolution pattern identification and traffic state analysis; traffic risk assessment and early warning. Then, the corresponding investigation and analysis was also conducted. The results show that the multi-source traffic information acquisition is primarily based on two or three kinds of sensor data, and the information coverage is lower; the traffic state operating analysis is still limited to short-term traffic state prediction and estimation, and the research on wide-area time scales is notably absent; most safety risk evaluations are based on accident data analysis, and the identification and the quantitative evaluation of pre-accident risks need to be supplemented. In addition, the complexity of the urban road traffic network, such as the serious conflict between vehicles and bicycles, and between vehicles and people, brings difficulties to the identification of traffic safety risks. Finally, future research and development direction is pointed out combined with the latest technology.

参考文献/References:

[1] Wang Y B, Coppola P, Tzimitsi A, et al. Real-time freeway network traffic surveillance: Large-scale field-testing results in southern Italy[J]. IEEE Transactions on Intelligent Transportation Systems, 2011, 12(2): 548-562. DOI:10.1109/tits.2011.2107901.
[2] Kong Q J, Li Z P, Chen Y K, et al. An approach to urban traffic state estimation by fusing multisource information[J]. IEEE Transactions on Intelligent Transportation Systems, 2009, 10(3): 499-511. DOI:10.1109/tits.2009.2026308.
[3] Ma X L, Tao Z M, Wang Y H, et al. Long short-term memory neural network for traffic speed prediction using remote microwave sensor data[J]. Transportation Research Part C: Emerging Technologies, 2015, 54: 187-197. DOI:10.1016/j.trc.2015.03.014.
[4] Kwong K, Kavaler R, Rajagopal R, et al. Real-time measurement of link vehicle count and travel time in a road network[J]. IEEE Transactions on Intelligent Transportation Systems, 2010, 11(4): 814-825. DOI:10.1109/tits.2010.2050881.
[5] Cheng H Y, Hsu S H. Intelligent highway traffic surveillance with self-diagnosis abilities[J]. IEEE Transactions on Intelligent Transportation Systems, 2011, 12(4): 1462-1472. DOI:10.1109/tits.2011.2160171.
[6] Messelodi S, Modena C M, Zanin M, et al. Intelligent extended floating car data collection[J]. Expert Systems with Applications, 2009, 36(3): 4213-4227. DOI:10.1016/j.eswa.2008.04.008.
[7] Pan C X, Lu J G, Di S, et al. Cellular-based data-extracting method for trip distribution[J]. Transportation Research Record: Journal of the Transportation Research Board, 2006, 1945(1): 33-39. DOI:10.1177/0361198106194500105.
[8] Faouzi N E E, Leung H, Kurian A. Data fusion in intelligent transportation systems: Progress and challenges—A survey[J]. Information Fusion, 2011, 12(1): 4-10. DOI:10.1016/j.inffus.2010.06.001.
[9] Rehrl K, Brunauer R, Gröchenig S. Collecting floating car data with smartphones: Results from a field trial in Austria[J]. Journal of Location Based Services, 2016, 10(1): 16-30. DOI:10.1080/17489725.2016.1169323.
[10] Dozza M, González N P. Recognising safety critical events: Can automatic video processing improve naturalistic data analyses?[J]. Accident Analysis & Prevention, 2013, 60: 298-304. DOI:10.1016/j.aap.2013.02.014.
[11] Ran B, Song L, Zhang J, et al. Using tensor completion method to achieving better coverage of traffic state estimation from sparse floating car data[J]. PLoS One, 2016, 11(7): e0157420. DOI:10.1371/journal.pone.0157420.
[12] Han Y F, Moutarde F. Analysis of large-scale traffic dynamics in an urban transportation network using non-negative tensor factorization[J]. International Journal of Intelligent Transportation Systems Research, 2016, 14(1): 36-49. DOI:10.1007/s13177-014-0099-7.
[13] Leduc G. Road traffic data: Collection methods and applications[J]. Working Papers on Energy, Transport and Climate Change, 2008, 1(55):JRC 47967.
[14] Bachmann C, Abdulhai B, Roorda M J, et al. A comparative assessment of multi-sensor data fusion techniques for freeway traffic speed estimation using microsimulation modeling[J]. Transportation Research Part C: Emerging Technologies, 2013, 26: 33-48. DOI:10.1016/j.trc.2012.07.003.
[15] He S L, Zhang J, Cheng Y, et al. Freeway multisensor data fusion approach integrating data from cellphone probes and fixed sensors[J]. Journal of Sensors, 2016, 2016: 1-13. DOI:10.1155/2016/7269382.
[16] 赵建东, 徐菲菲, 张琨, 等. 融合多源数据预测高速公路站间旅行时间[J]. 交通运输系统工程与信息, 2016, 16(1): 52-57. DOI:10.3969/j.issn.1009-6744.2016.01.009.
Zhao J D, Xu F F, Zhang K, et al. Highway travel time prediction based on multi-source data fusion[J]. Journal of Transportation Systems Engineering and Information Technology, 2016, 16(1): 52-57. DOI:10.3969/j.issn.1009-6744.2016.01.009. (in Chinese)
[17] Coue C, Fraichard T, Bessiere P, et al. Multi-sensor data fusion using Bayesian programming: An automotive application[C]//Intelligent Vehicle Symposium, IEEE.Versailles, France, 2002: 442-447. DOI:10.1109/IVS.2002.1187989.
[18] Zeng D H, Xu J M, Xu G. Data fusion for traffic incident detector using D-s evidence theory with probabilistic SVMs[J]. Journal of Computers, 2008, 3(10): 36-43. DOI:10.4304/jcp.3.10.36-43.
[19] 丁宏飞, 秦政, 李演洪, 等. 融合多源数据的ABC-SVM快速路交通事件检测[J]. 中国安全科学学报, 2015, 25(6): 162-166. DOI:10.16265/j.cnki.issn1003-3033.2015.06.027.
Ding H F, Qin Z, Li Y H, et al. Urban expressway’s traffic incident detection based on multi-source data fused by ABC-SVM[J]. China Safety Science Journal, 2015, 25(6): 162-166. DOI:10.16265/j.cnki.issn1003-3033.2015.06.027. (in Chinese)
[20] Nantes A, Ngoduy D, Bhaskar A, et al. Real-time traffic state estimation in urban corridors from heterogeneous data[J]. Transportation Research Part C: Emerging Technologies, 2016, 66: 99-118. DOI:10.1016/j.trc.2015.07.005.
[21] Daganzo C F. The cell transmission model: A dynamic representation of highway traffic consistent with the hydrodynamic theory[J]. Transportation Research Part B: Methodological, 1994, 28(4): 269-287. DOI:10.1016/0191-2615(94)90002-7.
[22] Munoz L, Sun X T, Horowitz R, et al. Traffic density estimation with the cell transmission model[C]//Proceedings of the 2003 American Control Conference. Denver, CO, USA, 2003: 3750-3755. DOI:10.1109/ACC.2003.1240418.
[23] Horowtiz R, Munoz L, Sun X. Modeling, estimation, and control of freeway traffic[R].Evanston,USA:Northwestern University, 2005.
[24] Gomes G, Horowitz R. Optimal freeway ramp metering using the asymmetric cell transmission model[J]. Transportation Research Part C: Emerging Technologies, 2006, 14(4): 244-262. DOI:10.1016/j.trc.2006.08.001.
[25] Boel R, Mihaylova L. A compositional stochastic model for real time freeway traffic simulation[J]. Transportation Research Part B: Methodological, 2006, 40(4): 319-334. DOI:10.1016/j.trb.2005.05.001.
[26] Musolino G, Vitetta A. Estimation of the network fundamental diagram(NFD): An urban application in emergency conditions[J]. Transportation Research Procedia, 2014, 3: 205-213. DOI:10.1016/j.trpro.2014.10.106.
[27] 高自友, 吴建军, 毛保华, 等. 交通运输网络复杂性及其相关问题的研究[J]. 交通运输系统工程与信息, 2005, 5(2): 79-84. DOI:10.3969/j.issn.1009-6744.2005.02.013.
Gao Z Y, Wu J J, Mao B H, et al. Study on the complexity of traffic networks and related problems[J]. Journal of Transportation Systems Engineering and Information Technology, 2005, 5(2): 79-84. DOI:10.3969/j.issn.1009-6744.2005.02.013. (in Chinese)
[28] Li S B, Li Y, Fu B B, et al. Study on simulation optimization of dynamic traffic signal based on complex networks[J]. Procedia Engineering, 2016, 137: 1-10. DOI:10.1016/j.proeng.2016.01.228.
[29] 刘新全. 基于贝叶斯网络推理的道路网络级联失效仿真[J]. 交通运输系统工程与信息, 2015, 15(2): 210-215,222. DOI:10.3969/j.issn.1009-6744.2015.02.032.
Liu X Q. Cascading failures simulation of road networks based on bayesian network inference[J]. Journal of Transportation Systems Engineering and Information Technology, 2015, 15(2): 210-215,222. DOI:10.3969/j.issn.1009-6744.2015.02.032. (in Chinese)
[30] Danczyk A, Di X, Liu H X, et al. Unexpected versus expected network disruption: Effects on travel behavior[J]. Transport Policy, 2017, 57: 68-78. DOI:10.1016/j.tranpol.2017.02.002.
[31] Wang L F, Chen H, Li Y. Transition characteristic analysis of traffic evolution process for urban traffic network[J]. The Scientific World Journal, 2014, 2014: 1-9. DOI:10.1155/2014/603274.
[32] Soltani A, Askari S. Exploring spatial autocorrelation of traffic crashes based on severity[J]. Injury, 2017, 48(3): 637-647. DOI:10.1016/j.injury.2017.01.032.
[33] Kang Y, Cho N, Son S. Spatiotemporal characteristics of elderly population’s traffic accidents in Seoul using space-time cube and space-time kernel density estimation[J]. PLoS One, 2018, 13(5): e0196845. DOI:10.1371/journal.pone.0196845.
[34] Fan Y X, Zhu X Y, She B, et al. Network-constrained spatio-temporal clustering analysis of traffic collisions in Jianghan District of Wuhan, China[J]. PLoS One, 2018, 13(4): e0195093. DOI:10.1371/journal.pone.0195093.
[35] Nanthawichit C, Nakatsuji T, Suzuki H. Application of probe-vehicle data for real-time traffic-state estimation and short-term travel-time prediction on a freeway[J]. Transportation Research Record: Journal of the Transportation Research Board, 2003, 1855(1): 49-59. DOI:10.3141/1855-06.
[36] Min W L, Wynter L. Real-time road traffic prediction with spatio-temporal correlations[J]. Transportation Research Part C: Emerging Technologies, 2011, 19(4): 606-616. DOI:10.1016/j.trc.2010.10.002.
[37] Kurzhanskiy A A, Varaiya P. Guaranteed prediction and estimation of the state of a road network[J]. Transportation Research Part C: Emerging Technologies, 2012, 21(1): 163-180. DOI:10.1016/j.trc.2011.08.007.
[38] Pan T L, Sumalee A, Zhong R X, et al. Short-term traffic state prediction based on Temporal-Spatial correlation[J]. IEEE Transactions on Intelligent Transportation Systems, 2013, 14(3): 1242-1254. DOI:10.1109/tits.2013.2258916.
[39] Jenelius E, Koutsopoulos H N. Travel time estimation for urban road networks using low frequency probe vehicle data[J]. Transportation Research Part B: Methodological, 2013, 53: 64-81. DOI:10.1016/j.trb.2013.03.008.
[40] Kong Q J, Zhao Q K, Wei C, et al. Efficient traffic state estimation for large-scale urban road networks[J]. IEEE Transactions on Intelligent Transportation Systems, 2013, 14(1): 398-407. DOI:10.1109/tits.2012.2218237.
[41] Li L, Chen X Q, Zhang L. Multimodel ensemble for freeway traffic state estimations[J]. IEEE Transactions on Intelligent Transportation Systems, 2014, 15(3): 1323-1336. DOI:10.1109/tits.2014.2299542.
[42] Zhu G Y, Lu G N, Yang C G, et al. Research on the comprehensive traffic state evaluation model linked with drivers’ perception under the vehicle networking[J]. Personal and Ubiquitous Computing, 2014, 18(8): 1955-1961. DOI:10.1007/s00779-014-0801-4.
[43] Xu D W, Wang Y D, Li H J, et al. The measurement of road traffic states under high data loss rate[J]. Measurement, 2015, 69: 134-145. DOI:10.1016/j.measurement.2015.03.020.
[44] 赵新勇, 安实, 丛浩哲. 基于路网抗毁可靠度的交通突发事件态势分析[J]. 交通运输系统工程与信息, 2013, 13(5): 79-85. DOI:10.3969/j.issn.1009-6744.2013.05.012.
Zhao X Y, An S, Cong H Z. Traffic incident situation evaluation based on road network reliability of invulnerability[J]. Journal of Transportation Systems Engineering and Information Technology, 2013, 13(5): 79-85. DOI:10.3969/j.issn.1009-6744.2013.05.012. (in Chinese)
[45] Young W, Sobhani A, Lenné M G, et al. Simulation of safety: A review of the state of the art in road safety simulation modelling[J]. Accident Analysis & Prevention, 2014, 66: 89-103. DOI:10.1016/j.aap.2014.01.008.
[46] Dijkstra A. Assessing the safety of routes in a regional network[J]. Transportation Research Part C: Emerging Technologies, 2013, 32: 103-115. DOI:10.1016/j.trc.2012.10.008.
[47] Dijkstra A, Marchesini P, Bijleveld F, et al. Do calculated conflicts in microsimulation model predict number of crashes?[J]. Transportation Research Record: Journal of the Transportation Research Board, 2010, 2147(1): 105-112. DOI:10.3141/2147-13.
[48] Elvik R. Operational criteria of causality for observational road safety evaluation studies[J]. Transportation Research Record: Journal of the Transportation Research Board, 2007, 2019(1): 74-81. DOI:10.3141/2019-10.
[49] Hauer E. Cause, effect and regression in road safety: A case study[J]. Accident Analysis & Prevention, 2010, 42(4): 1128-1135. DOI:10.1016/j.aap.2009.12.027.
[50] Laureshyn A, Svensson Å, Hydén C. Evaluation of traffic safety, based on micro-level behavioural data: Theoretical framework and first implementation[J]. Accident Analysis & Prevention, 2010, 42(6): 1637-1646. DOI:10.1016/j.aap.2010.03.021.
[51] Yu R J, Abdel-Aty M. An optimal variable speed limits system to ameliorate traffic safety risk[J]. Transportation Research Part C: Emerging Technologies, 2014, 46: 235-246. DOI:10.1016/j.trc.2014.05.016.
[52] Yu R J, Abdel-Aty M. Utilizing support vector machine in real-time crash risk evaluation[J]. Accident Analysis & Prevention, 2013, 51: 252-259. DOI:10.1016/j.aap.2012.11.027.
[53] Zhang N, Huang H, Su B N, et al. Analysis of dynamic road risk for pedestrian evacuation[J]. Physica A: Statistical Mechanics and its Applications, 2015, 430: 171-183. DOI:10.1016/j.physa.2015.02.082.
[54] Collins A J, Robinson R M, Foytik P, et al. Integrating a simple traffic incident model for rapid evacuation analysis[J]. International Journal of Transportation, 2016, 4(3): 15-32. DOI:10.14257/ijt.2016.4.3.02.
[55] Nogal M, O’Connor A, Martinez-Pastor B, et al. Novel probabilistic resilience assessment framework of transportation networks against extreme weather events[J]. ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering, 2017, 3(3): 04017004. DOI:10.1061/ajrua6.0000908.
[56] Liu M, Agarwal J, Blockley D. Vulnerability of road networks[J]. Civil Engineering and Environmental Systems, 2016, 33(2): 147-175. DOI:10.1080/10286608.2016.1148142.
[57] 杨露萍, 钱大琳. 道路交通网络脆弱性研究[J]. 交通运输系统工程与信息, 2012, 12(1): 105-110. DOI:10.3969/j.issn.1009-6744.2012.01.016.
Yang L P, Qian D L. Vulnerability analysis of road networks[J]. Journal of Transportation Systems Engineering and Information Technology, 2012, 12(1): 105-110. DOI:10.3969/j.issn.1009-6744.2012.01.016. (in Chinese)
[58] 李成兵, 魏磊, 李奉孝, 等. 基于攻击策略的城市群复合交通网络脆弱性研究[J]. 公路交通科技, 2017, 34(3): 101-109. DOI:10.3969/j.issn.1002-0268.2017.03.014.
Li C B, Wei L, Li F X, et al. Study on vulnerability of city agglomeration compound traffic network based on attack strategy[J]. Journal of Highway and Transportation Research and Development, 2017, 34(3): 101-109. DOI:10.3969/j.issn.1002-0268.2017.03.014. (in Chinese)
[59] Xu C C, Liu P, Yang B, et al. Real-time estimation of secondary crash likelihood on freeways using high-resolution loop detector data[J]. Transportation Research Part C: Emerging Technologies, 2016, 71: 406-418. DOI:10.1016/j.trc.2016.08.015.
[60] Dingus T A, Guo F, Lee S, et al. Driver crash risk factors and prevalence evaluation using naturalistic driving data[J]. Proceedings of the National Academy of Sciences, 2016, 113(10): 2636-2641. DOI:10.1073/pnas.1513271113.
[61] Lefèvre S, Vasquez D, Laugier C. A survey on motion prediction and risk assessment for intelligent vehicles[J]. ROBOMECH Journal, 2014, 1(1): 1-14. DOI:10.1186/s40648-014-0001-z.
[62] Pulugurtha S S, Thakur V. Evaluating the effectiveness of on-street bicycle lane and assessing risk to bicyclists in Charlotte, North Carolina[J]. Accident Analysis & Prevention, 2015, 76: 34-41. DOI:10.1016/j.aap.2014.12.020.
[63] Golestan K, Khaleghi B, Karray F, et al. Attention assist: A high-level information fusion framework for situation and threat assessment in vehicular ad hoc networks[J]. IEEE Transactions on Intelligent Transportation Systems, 2016, 17(5): 1271-1285. DOI:10.1109/tits.2015.2502601.
[64] Gokulakrishnan P, Ganeshkumar P. Road accident prevention with instant emergency warning message dissemination in vehicular ad-hoc network[J]. PLoS One, 2015, 10(12): e0143383. DOI:10.1371/journal.pone.0143383.
[65] 孙剑, 孙杰. 城市快速路实时交通流运行安全主动风险评估[J]. 同济大学学报(自然科学版), 2014, 42(6): 873-879. DOI:10.3969/j.issn.0253-374x.2014.06.008.
Sun J, Sun J. Proactive assessment of real-time traffic flow accident risk on urban expressway[J]. Journal of Tongji University(Natural Science), 2014, 42(6): 873-879. DOI:10.3969/j.issn.0253-374x.2014.06.008. (in Chinese)
[66] Najafi S, Flintsch G W, Khaleghian S. Fuzzy logic inference-based Pavement Friction Management and real-time slippery warning systems: A proof of concept study[J]. Accident Analysis & Prevention, 2016, 90: 41-49. DOI:10.1016/j.aap.2016.02.007.
[67] 王世明, 徐建闽, 罗强, 等. 面向高速公路的车辆换道安全预警模型[J]. 华南理工大学学报(自然科学版), 2014, 42(12): 40-50. DOI:10.3969/j.issn.1000-565X.2014.12.007.
Wang S M, Xu J M, Luo Q, et al. A safety warning model for lane changing on highway[J]. Journal of South China University of Technology(Natural Science Edition), 2014, 42(12): 40-50. DOI:10.3969/j.issn.1000-565X.2014.12.007. (in Chinese)
[68] Steenbruggen J, Tranos E, Rietveld P. Traffic incidents in motorways: An empirical proposal for incident detection using data from mobile phone operators[J]. Journal of Transport Geography, 2016, 54: 81-90. DOI:10.1016/j.jtrangeo.2016.05.008.
[69] 赵学刚. 城市道路交通安全综合风险预警控制研究[J]. 中国安全科学学报, 2016, 26(2): 158-163. DOI:10.16265/j.cnki.issn1003-3033.2016.02.027.
Zhao X G. Research on integrated warning control of urban traffic safety risks[J]. China Safety Science Journal, 2016, 26(2): 158-163. DOI:10.16265/j.cnki.issn1003-3033.2016.02.027. (in Chinese)
[70] Milanés V, Pérez J, Godoy J, et al. A fuzzy aid rear-end collision warning/avoidance system[J]. Expert Systems with Applications, 2012, 39(10): 9097-9107. DOI:10.1016/j.eswa.2012.02.054.
[71] Martin J, Rozas A, Araujo A. A WSN-based intrusion alarm system to improve safety in road work zones[J]. Journal of Sensors, 2016, 2016: 1-8. DOI:10.1155/2016/7048141.
[72] 张登宏. 基于物联网技术的交通安全预警机制研究[J]. 计算机仿真, 2011, 28(11): 346-349. DOI:10.3969/j.issn.1006-9348.2011.11.084.
Zhang D H. Research on early-warning mechanism based on internet of things for traffic safety[J]. Computer Simulation, 2011, 28(11): 346-349. DOI:10.3969/j.issn.1006-9348.2011.11.084. (in Chinese)
[73] Wu J J, Abdel-Aty M, Yu R J, et al. A novel visible network approach for freeway crash analysis[J]. Transportation Research Part C: Emerging Technologies, 2013, 36: 72-82. DOI:10.1016/j.trc.2013.08.005.

备注/Memo

备注/Memo:
收稿日期: 2018-09-12.
作者简介: 陆建(1972—),男,博士,教授,博士生导师, lujian_1972@seu.edu.cn.
基金项目: 国家自然科学基金资助项目(51478110)、江苏省科技计划资助项目(BY 2016076-05).
引用本文: 陆建,程泽阳.道路交通网络安全风险辨识研究进展[J].东南大学学报(自然科学版),2019,49(2):404-412. DOI:10.3969/j.issn.1001-0505.2019.02.029.
更新日期/Last Update: 2019-03-20