参考文献/References:
[1] Wang Y B, Coppola P, Tzimitsi A, et al. Real-time freeway network traffic surveillance: Large-scale field-testing results in southern Italy[J]. IEEE Transactions on Intelligent Transportation Systems, 2011, 12(2): 548-562. DOI:10.1109/tits.2011.2107901.
[2] Kong Q J, Li Z P, Chen Y K, et al. An approach to urban traffic state estimation by fusing multisource information[J]. IEEE Transactions on Intelligent Transportation Systems, 2009, 10(3): 499-511. DOI:10.1109/tits.2009.2026308.
[3] Ma X L, Tao Z M, Wang Y H, et al. Long short-term memory neural network for traffic speed prediction using remote microwave sensor data[J]. Transportation Research Part C: Emerging Technologies, 2015, 54: 187-197. DOI:10.1016/j.trc.2015.03.014.
[4] Kwong K, Kavaler R, Rajagopal R, et al. Real-time measurement of link vehicle count and travel time in a road network[J]. IEEE Transactions on Intelligent Transportation Systems, 2010, 11(4): 814-825. DOI:10.1109/tits.2010.2050881.
[5] Cheng H Y, Hsu S H. Intelligent highway traffic surveillance with self-diagnosis abilities[J]. IEEE Transactions on Intelligent Transportation Systems, 2011, 12(4): 1462-1472. DOI:10.1109/tits.2011.2160171.
[6] Messelodi S, Modena C M, Zanin M, et al. Intelligent extended floating car data collection[J]. Expert Systems with Applications, 2009, 36(3): 4213-4227. DOI:10.1016/j.eswa.2008.04.008.
[7] Pan C X, Lu J G, Di S, et al. Cellular-based data-extracting method for trip distribution[J]. Transportation Research Record: Journal of the Transportation Research Board, 2006, 1945(1): 33-39. DOI:10.1177/0361198106194500105.
[8] Faouzi N E E, Leung H, Kurian A. Data fusion in intelligent transportation systems: Progress and challenges—A survey[J]. Information Fusion, 2011, 12(1): 4-10. DOI:10.1016/j.inffus.2010.06.001.
[9] Rehrl K, Brunauer R, Gröchenig S. Collecting floating car data with smartphones: Results from a field trial in Austria[J]. Journal of Location Based Services, 2016, 10(1): 16-30. DOI:10.1080/17489725.2016.1169323.
[10] Dozza M, González N P. Recognising safety critical events: Can automatic video processing improve naturalistic data analyses?[J]. Accident Analysis & Prevention, 2013, 60: 298-304. DOI:10.1016/j.aap.2013.02.014.
[11] Ran B, Song L, Zhang J, et al. Using tensor completion method to achieving better coverage of traffic state estimation from sparse floating car data[J]. PLoS One, 2016, 11(7): e0157420. DOI:10.1371/journal.pone.0157420.
[12] Han Y F, Moutarde F. Analysis of large-scale traffic dynamics in an urban transportation network using non-negative tensor factorization[J]. International Journal of Intelligent Transportation Systems Research, 2016, 14(1): 36-49. DOI:10.1007/s13177-014-0099-7.
[13] Leduc G. Road traffic data: Collection methods and applications[J]. Working Papers on Energy, Transport and Climate Change, 2008, 1(55):JRC 47967.
[14] Bachmann C, Abdulhai B, Roorda M J, et al. A comparative assessment of multi-sensor data fusion techniques for freeway traffic speed estimation using microsimulation modeling[J]. Transportation Research Part C: Emerging Technologies, 2013, 26: 33-48. DOI:10.1016/j.trc.2012.07.003.
[15] He S L, Zhang J, Cheng Y, et al. Freeway multisensor data fusion approach integrating data from cellphone probes and fixed sensors[J]. Journal of Sensors, 2016, 2016: 1-13. DOI:10.1155/2016/7269382.
[16] 赵建东, 徐菲菲, 张琨, 等. 融合多源数据预测高速公路站间旅行时间[J]. 交通运输系统工程与信息, 2016, 16(1): 52-57. DOI:10.3969/j.issn.1009-6744.2016.01.009.
Zhao J D, Xu F F, Zhang K, et al. Highway travel time prediction based on multi-source data fusion[J]. Journal of Transportation Systems Engineering and Information Technology, 2016, 16(1): 52-57. DOI:10.3969/j.issn.1009-6744.2016.01.009. (in Chinese)
[17] Coue C, Fraichard T, Bessiere P, et al. Multi-sensor data fusion using Bayesian programming: An automotive application[C]//Intelligent Vehicle Symposium, IEEE.Versailles, France, 2002: 442-447. DOI:10.1109/IVS.2002.1187989.
[18] Zeng D H, Xu J M, Xu G. Data fusion for traffic incident detector using D-s evidence theory with probabilistic SVMs[J]. Journal of Computers, 2008, 3(10): 36-43. DOI:10.4304/jcp.3.10.36-43.
[19] 丁宏飞, 秦政, 李演洪, 等. 融合多源数据的ABC-SVM快速路交通事件检测[J]. 中国安全科学学报, 2015, 25(6): 162-166. DOI:10.16265/j.cnki.issn1003-3033.2015.06.027.
Ding H F, Qin Z, Li Y H, et al. Urban expressway’s traffic incident detection based on multi-source data fused by ABC-SVM[J]. China Safety Science Journal, 2015, 25(6): 162-166. DOI:10.16265/j.cnki.issn1003-3033.2015.06.027. (in Chinese)
[20] Nantes A, Ngoduy D, Bhaskar A, et al. Real-time traffic state estimation in urban corridors from heterogeneous data[J]. Transportation Research Part C: Emerging Technologies, 2016, 66: 99-118. DOI:10.1016/j.trc.2015.07.005.
[21] Daganzo C F. The cell transmission model: A dynamic representation of highway traffic consistent with the hydrodynamic theory[J]. Transportation Research Part B: Methodological, 1994, 28(4): 269-287. DOI:10.1016/0191-2615(94)90002-7.
[22] Munoz L, Sun X T, Horowitz R, et al. Traffic density estimation with the cell transmission model[C]//Proceedings of the 2003 American Control Conference. Denver, CO, USA, 2003: 3750-3755. DOI:10.1109/ACC.2003.1240418.
[23] Horowtiz R, Munoz L, Sun X. Modeling, estimation, and control of freeway traffic[R].Evanston,USA:Northwestern University, 2005.
[24] Gomes G, Horowitz R. Optimal freeway ramp metering using the asymmetric cell transmission model[J]. Transportation Research Part C: Emerging Technologies, 2006, 14(4): 244-262. DOI:10.1016/j.trc.2006.08.001.
[25] Boel R, Mihaylova L. A compositional stochastic model for real time freeway traffic simulation[J]. Transportation Research Part B: Methodological, 2006, 40(4): 319-334. DOI:10.1016/j.trb.2005.05.001.
[26] Musolino G, Vitetta A. Estimation of the network fundamental diagram(NFD): An urban application in emergency conditions[J]. Transportation Research Procedia, 2014, 3: 205-213. DOI:10.1016/j.trpro.2014.10.106.
[27] 高自友, 吴建军, 毛保华, 等. 交通运输网络复杂性及其相关问题的研究[J]. 交通运输系统工程与信息, 2005, 5(2): 79-84. DOI:10.3969/j.issn.1009-6744.2005.02.013.
Gao Z Y, Wu J J, Mao B H, et al. Study on the complexity of traffic networks and related problems[J]. Journal of Transportation Systems Engineering and Information Technology, 2005, 5(2): 79-84. DOI:10.3969/j.issn.1009-6744.2005.02.013. (in Chinese)
[28] Li S B, Li Y, Fu B B, et al. Study on simulation optimization of dynamic traffic signal based on complex networks[J]. Procedia Engineering, 2016, 137: 1-10. DOI:10.1016/j.proeng.2016.01.228.
[29] 刘新全. 基于贝叶斯网络推理的道路网络级联失效仿真[J]. 交通运输系统工程与信息, 2015, 15(2): 210-215,222. DOI:10.3969/j.issn.1009-6744.2015.02.032.
Liu X Q. Cascading failures simulation of road networks based on bayesian network inference[J]. Journal of Transportation Systems Engineering and Information Technology, 2015, 15(2): 210-215,222. DOI:10.3969/j.issn.1009-6744.2015.02.032. (in Chinese)
[30] Danczyk A, Di X, Liu H X, et al. Unexpected versus expected network disruption: Effects on travel behavior[J]. Transport Policy, 2017, 57: 68-78. DOI:10.1016/j.tranpol.2017.02.002.
[31] Wang L F, Chen H, Li Y. Transition characteristic analysis of traffic evolution process for urban traffic network[J]. The Scientific World Journal, 2014, 2014: 1-9. DOI:10.1155/2014/603274.
[32] Soltani A, Askari S. Exploring spatial autocorrelation of traffic crashes based on severity[J]. Injury, 2017, 48(3): 637-647. DOI:10.1016/j.injury.2017.01.032.
[33] Kang Y, Cho N, Son S. Spatiotemporal characteristics of elderly population’s traffic accidents in Seoul using space-time cube and space-time kernel density estimation[J]. PLoS One, 2018, 13(5): e0196845. DOI:10.1371/journal.pone.0196845.
[34] Fan Y X, Zhu X Y, She B, et al. Network-constrained spatio-temporal clustering analysis of traffic collisions in Jianghan District of Wuhan, China[J]. PLoS One, 2018, 13(4): e0195093. DOI:10.1371/journal.pone.0195093.
[35] Nanthawichit C, Nakatsuji T, Suzuki H. Application of probe-vehicle data for real-time traffic-state estimation and short-term travel-time prediction on a freeway[J]. Transportation Research Record: Journal of the Transportation Research Board, 2003, 1855(1): 49-59. DOI:10.3141/1855-06.
[36] Min W L, Wynter L. Real-time road traffic prediction with spatio-temporal correlations[J]. Transportation Research Part C: Emerging Technologies, 2011, 19(4): 606-616. DOI:10.1016/j.trc.2010.10.002.
[37] Kurzhanskiy A A, Varaiya P. Guaranteed prediction and estimation of the state of a road network[J]. Transportation Research Part C: Emerging Technologies, 2012, 21(1): 163-180. DOI:10.1016/j.trc.2011.08.007.
[38] Pan T L, Sumalee A, Zhong R X, et al. Short-term traffic state prediction based on Temporal-Spatial correlation[J]. IEEE Transactions on Intelligent Transportation Systems, 2013, 14(3): 1242-1254. DOI:10.1109/tits.2013.2258916.
[39] Jenelius E, Koutsopoulos H N. Travel time estimation for urban road networks using low frequency probe vehicle data[J]. Transportation Research Part B: Methodological, 2013, 53: 64-81. DOI:10.1016/j.trb.2013.03.008.
[40] Kong Q J, Zhao Q K, Wei C, et al. Efficient traffic state estimation for large-scale urban road networks[J]. IEEE Transactions on Intelligent Transportation Systems, 2013, 14(1): 398-407. DOI:10.1109/tits.2012.2218237.
[41] Li L, Chen X Q, Zhang L. Multimodel ensemble for freeway traffic state estimations[J]. IEEE Transactions on Intelligent Transportation Systems, 2014, 15(3): 1323-1336. DOI:10.1109/tits.2014.2299542.
[42] Zhu G Y, Lu G N, Yang C G, et al. Research on the comprehensive traffic state evaluation model linked with drivers’ perception under the vehicle networking[J]. Personal and Ubiquitous Computing, 2014, 18(8): 1955-1961. DOI:10.1007/s00779-014-0801-4.
[43] Xu D W, Wang Y D, Li H J, et al. The measurement of road traffic states under high data loss rate[J]. Measurement, 2015, 69: 134-145. DOI:10.1016/j.measurement.2015.03.020.
[44] 赵新勇, 安实, 丛浩哲. 基于路网抗毁可靠度的交通突发事件态势分析[J]. 交通运输系统工程与信息, 2013, 13(5): 79-85. DOI:10.3969/j.issn.1009-6744.2013.05.012.
Zhao X Y, An S, Cong H Z. Traffic incident situation evaluation based on road network reliability of invulnerability[J]. Journal of Transportation Systems Engineering and Information Technology, 2013, 13(5): 79-85. DOI:10.3969/j.issn.1009-6744.2013.05.012. (in Chinese)
[45] Young W, Sobhani A, Lenné M G, et al. Simulation of safety: A review of the state of the art in road safety simulation modelling[J]. Accident Analysis & Prevention, 2014, 66: 89-103. DOI:10.1016/j.aap.2014.01.008.
[46] Dijkstra A. Assessing the safety of routes in a regional network[J]. Transportation Research Part C: Emerging Technologies, 2013, 32: 103-115. DOI:10.1016/j.trc.2012.10.008.
[47] Dijkstra A, Marchesini P, Bijleveld F, et al. Do calculated conflicts in microsimulation model predict number of crashes?[J]. Transportation Research Record: Journal of the Transportation Research Board, 2010, 2147(1): 105-112. DOI:10.3141/2147-13.
[48] Elvik R. Operational criteria of causality for observational road safety evaluation studies[J]. Transportation Research Record: Journal of the Transportation Research Board, 2007, 2019(1): 74-81. DOI:10.3141/2019-10.
[49] Hauer E. Cause, effect and regression in road safety: A case study[J]. Accident Analysis & Prevention, 2010, 42(4): 1128-1135. DOI:10.1016/j.aap.2009.12.027.
[50] Laureshyn A, Svensson Å, Hydén C. Evaluation of traffic safety, based on micro-level behavioural data: Theoretical framework and first implementation[J]. Accident Analysis & Prevention, 2010, 42(6): 1637-1646. DOI:10.1016/j.aap.2010.03.021.
[51] Yu R J, Abdel-Aty M. An optimal variable speed limits system to ameliorate traffic safety risk[J]. Transportation Research Part C: Emerging Technologies, 2014, 46: 235-246. DOI:10.1016/j.trc.2014.05.016.
[52] Yu R J, Abdel-Aty M. Utilizing support vector machine in real-time crash risk evaluation[J]. Accident Analysis & Prevention, 2013, 51: 252-259. DOI:10.1016/j.aap.2012.11.027.
[53] Zhang N, Huang H, Su B N, et al. Analysis of dynamic road risk for pedestrian evacuation[J]. Physica A: Statistical Mechanics and its Applications, 2015, 430: 171-183. DOI:10.1016/j.physa.2015.02.082.
[54] Collins A J, Robinson R M, Foytik P, et al. Integrating a simple traffic incident model for rapid evacuation analysis[J]. International Journal of Transportation, 2016, 4(3): 15-32. DOI:10.14257/ijt.2016.4.3.02.
[55] Nogal M, O’Connor A, Martinez-Pastor B, et al. Novel probabilistic resilience assessment framework of transportation networks against extreme weather events[J]. ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering, 2017, 3(3): 04017004. DOI:10.1061/ajrua6.0000908.
[56] Liu M, Agarwal J, Blockley D. Vulnerability of road networks[J]. Civil Engineering and Environmental Systems, 2016, 33(2): 147-175. DOI:10.1080/10286608.2016.1148142.
[57] 杨露萍, 钱大琳. 道路交通网络脆弱性研究[J]. 交通运输系统工程与信息, 2012, 12(1): 105-110. DOI:10.3969/j.issn.1009-6744.2012.01.016.
Yang L P, Qian D L. Vulnerability analysis of road networks[J]. Journal of Transportation Systems Engineering and Information Technology, 2012, 12(1): 105-110. DOI:10.3969/j.issn.1009-6744.2012.01.016. (in Chinese)
[58] 李成兵, 魏磊, 李奉孝, 等. 基于攻击策略的城市群复合交通网络脆弱性研究[J]. 公路交通科技, 2017, 34(3): 101-109. DOI:10.3969/j.issn.1002-0268.2017.03.014.
Li C B, Wei L, Li F X, et al. Study on vulnerability of city agglomeration compound traffic network based on attack strategy[J]. Journal of Highway and Transportation Research and Development, 2017, 34(3): 101-109. DOI:10.3969/j.issn.1002-0268.2017.03.014. (in Chinese)
[59] Xu C C, Liu P, Yang B, et al. Real-time estimation of secondary crash likelihood on freeways using high-resolution loop detector data[J]. Transportation Research Part C: Emerging Technologies, 2016, 71: 406-418. DOI:10.1016/j.trc.2016.08.015.
[60] Dingus T A, Guo F, Lee S, et al. Driver crash risk factors and prevalence evaluation using naturalistic driving data[J]. Proceedings of the National Academy of Sciences, 2016, 113(10): 2636-2641. DOI:10.1073/pnas.1513271113.
[61] Lefèvre S, Vasquez D, Laugier C. A survey on motion prediction and risk assessment for intelligent vehicles[J]. ROBOMECH Journal, 2014, 1(1): 1-14. DOI:10.1186/s40648-014-0001-z.
[62] Pulugurtha S S, Thakur V. Evaluating the effectiveness of on-street bicycle lane and assessing risk to bicyclists in Charlotte, North Carolina[J]. Accident Analysis & Prevention, 2015, 76: 34-41. DOI:10.1016/j.aap.2014.12.020.
[63] Golestan K, Khaleghi B, Karray F, et al. Attention assist: A high-level information fusion framework for situation and threat assessment in vehicular ad hoc networks[J]. IEEE Transactions on Intelligent Transportation Systems, 2016, 17(5): 1271-1285. DOI:10.1109/tits.2015.2502601.
[64] Gokulakrishnan P, Ganeshkumar P. Road accident prevention with instant emergency warning message dissemination in vehicular ad-hoc network[J]. PLoS One, 2015, 10(12): e0143383. DOI:10.1371/journal.pone.0143383.
[65] 孙剑, 孙杰. 城市快速路实时交通流运行安全主动风险评估[J]. 同济大学学报(自然科学版), 2014, 42(6): 873-879. DOI:10.3969/j.issn.0253-374x.2014.06.008.
Sun J, Sun J. Proactive assessment of real-time traffic flow accident risk on urban expressway[J]. Journal of Tongji University(Natural Science), 2014, 42(6): 873-879. DOI:10.3969/j.issn.0253-374x.2014.06.008. (in Chinese)
[66] Najafi S, Flintsch G W, Khaleghian S. Fuzzy logic inference-based Pavement Friction Management and real-time slippery warning systems: A proof of concept study[J]. Accident Analysis & Prevention, 2016, 90: 41-49. DOI:10.1016/j.aap.2016.02.007.
[67] 王世明, 徐建闽, 罗强, 等. 面向高速公路的车辆换道安全预警模型[J]. 华南理工大学学报(自然科学版), 2014, 42(12): 40-50. DOI:10.3969/j.issn.1000-565X.2014.12.007.
Wang S M, Xu J M, Luo Q, et al. A safety warning model for lane changing on highway[J]. Journal of South China University of Technology(Natural Science Edition), 2014, 42(12): 40-50. DOI:10.3969/j.issn.1000-565X.2014.12.007. (in Chinese)
[68] Steenbruggen J, Tranos E, Rietveld P. Traffic incidents in motorways: An empirical proposal for incident detection using data from mobile phone operators[J]. Journal of Transport Geography, 2016, 54: 81-90. DOI:10.1016/j.jtrangeo.2016.05.008.
[69] 赵学刚. 城市道路交通安全综合风险预警控制研究[J]. 中国安全科学学报, 2016, 26(2): 158-163. DOI:10.16265/j.cnki.issn1003-3033.2016.02.027.
Zhao X G. Research on integrated warning control of urban traffic safety risks[J]. China Safety Science Journal, 2016, 26(2): 158-163. DOI:10.16265/j.cnki.issn1003-3033.2016.02.027. (in Chinese)
[70] Milanés V, Pérez J, Godoy J, et al. A fuzzy aid rear-end collision warning/avoidance system[J]. Expert Systems with Applications, 2012, 39(10): 9097-9107. DOI:10.1016/j.eswa.2012.02.054.
[71] Martin J, Rozas A, Araujo A. A WSN-based intrusion alarm system to improve safety in road work zones[J]. Journal of Sensors, 2016, 2016: 1-8. DOI:10.1155/2016/7048141.
[72] 张登宏. 基于物联网技术的交通安全预警机制研究[J]. 计算机仿真, 2011, 28(11): 346-349. DOI:10.3969/j.issn.1006-9348.2011.11.084.
Zhang D H. Research on early-warning mechanism based on internet of things for traffic safety[J]. Computer Simulation, 2011, 28(11): 346-349. DOI:10.3969/j.issn.1006-9348.2011.11.084. (in Chinese)
[73] Wu J J, Abdel-Aty M, Yu R J, et al. A novel visible network approach for freeway crash analysis[J]. Transportation Research Part C: Emerging Technologies, 2013, 36: 72-82. DOI:10.1016/j.trc.2013.08.005.