[1]范家俊,吴刚,冯德成,等.新型消能减震阻尼器滞回性能试验研究及有限元分析[J].东南大学学报(自然科学版),2019,49(3):413-419.[doi:10.3969/j.issn.1001-0505.2019.03.001]
 Fan Jiajun,Wu Gang,Feng Decheng,et al.Experimental study on hysteretic behavior of novel energy dissipation damper and finite element analysis[J].Journal of Southeast University (Natural Science Edition),2019,49(3):413-419.[doi:10.3969/j.issn.1001-0505.2019.03.001]
点击复制

新型消能减震阻尼器滞回性能试验研究及有限元分析()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
49
期数:
2019年第3期
页码:
413-419
栏目:
土木工程
出版日期:
2019-05-20

文章信息/Info

Title:
Experimental study on hysteretic behavior of novel energy dissipation damper and finite element analysis
作者:
范家俊1吴刚1冯德成1卢旦2田炜2孙后伟3
1 东南大学混凝土及预应力混凝土结构教育部重点实验室, 南京 210096; 2 华东建筑设计研究院有限公司, 上海 200002; 3 同济大学建筑设计研究院(集团)有限公司, 上海 200092
Author(s):
Fan Jiajun1 Wu Gang1 Feng Decheng1 Lu Dan2 Tian Wei2 Sun Houwei3
1 Key Laboratory for Concrete and Pre-stressed Concrete Structures of Education of Ministry, Southeast University, Nanjing 210096, China
2 East China Architectural Design and Research Institute Co., Ltd., Shanghai 200002, China
3 Tongji Architectural Design(Group)Co., Ltd., Tongji University, Shanghai 200092, China
关键词:
消能减震阻尼器 拟静力试验 滞回性能 有限元模型 参数分析
Keywords:
energy dissipation damper quasi-static test hysteretic behavior finite element model parameter analysis
分类号:
TU375.4
DOI:
10.3969/j.issn.1001-0505.2019.03.001
摘要:
提出了一种用于装配式混凝土框架结构的新型消能减震阻尼器,通过拟静力试验研究其滞回性能,分析了该阻尼器的破坏模式、承载能力、耗能能力以及刚度退化等,建立了精细有限元模型进行参数分析.试验结果表明,该阻尼器耗能能力较好,具有受力机制明确和设计性能良好等优点.有限元分析结果表明,增加耗能杆直径和销轴-耗能杆间距可使阻尼器具有更好的承载力和耗能能力,增加夹板间距能有效提高阻尼器的耗能能力,销轴直径对阻尼器的承载力和耗能能力影响较小,低强度高延性的耗能杆(屈服强度200 MPa)可提高阻尼器的耗能能力,但降低了阻尼器的承载力.在装配式混凝土框架结构中采用该阻尼器,可使结构在地震作用时的耗能和损伤集中在阻尼器部位.
Abstract:
A novel energy dissipation damper adopted in the prefabricated concrete moment resisting frames was proposed. The hysteretic behavior of the novel energy dissipation damper was investigated by the quasi-static test. The failure pattern, the load-carrying capacity, the energy dissipation capacity and the stiffness degradation were analyzed. The finite element model was established to analyze the parameters. The experimental results show that the energy dissipation damper has advantages of good energy dissipation capacity, explicit load carrying mechanism, and performance-based design. The finite element analysis results show that the load-carrying capacity and the energy dissipation capacity of the damper increase with the increase of the diameter of energy dissipation(ED)bars and the distance between the pins and the ED bars. The increase of the distance between the splints can effectively improve the energy dissipation capacity of the damper. However, the diameter of pins has little influence on the load-carrying capacity and the energy dissipation capacity. The ED bars with low strength(the yield strength of 200 MPa)and good ductility can improve the energy dissipation capacity of the damper, but reduce the load-carrying capacity. When the damper is used in prefabricated reinforced concrete frames, the energy dissipation and the damage of the structure under earthquake can be concentrated on the damper.

参考文献/References:

[1] 吴刚, 冯德成. 装配式混凝土框架节点基本性能研究进展[J]. 建筑结构学报, 2018, 39(2): 1-16. DOI:10.14006/j.jzjgxb.2018.02.001.
Wu G, Feng D C. Research progress on fundamental performance of precast concrete frame beam-to-column connections[J]. Journal of Building Structures, 2018, 39(2): 1-16. DOI:10.14006/j.jzjgxb.2018.02.001. (in Chinese)
[2] Morgen B G, Kurama Y C. Seismic design of friction-damped precast concrete frame structures[J].Journal of Structural Engineering, 2007, 133(11): 1501-1511. DOI:10.1061/(asce)0733-9445(2007)133:11(1501).
[3] Valente M. Improving the seismic performance of precast buildings using dissipative devices[J].Procedia Engineering, 2013, 54: 795-804. DOI:10.1016/j.proeng.2013.03.073.
[4] Song L L, Guo T, Chen C. Experimental and numerical study of a self-centering prestressed concrete moment resisting frame connection with bolted web friction devices[J].Earthquake Engineering & Structural Dynamics, 2014, 43(4): 529-545. DOI:10.1002/eqe.2358.
[5] Song L L, Guo T, Cao Z L. Seismic response of self-centering prestressed concrete moment resisting frames with web friction devices[J].Soil Dynamics and Earthquake Engineering, 2015, 71: 151-162. DOI:10.1016/j.soildyn.2015.01.018.
[6] Oh S H, Kim Y J, Ryu H S. Seismic performance of steel structures with slit dampers[J].Engineering Structures, 2009, 31(9): 1997-2008. DOI:10.1016/j.engstruct.2009.03.003.
[7] 蔡小宁, 孟少平, 孙巍巍. 自复位预制框架边节点抗震性能试验研究[J]. 土木工程学报, 2012, 45(12): 29-37. DOI:10.15951/j.tmgcxb.2012.12.010.
Cai X N, Meng S P, Sun W W. Experimental study on behaviors of beam-column connections for self-centering post-tensioned precast frame[J]. China Civil Engineering Journal, 2012, 45(12): 29-37. DOI:10.15951/j.tmgcxb.2012.12.010. (in Chinese)
[8] 吴从晓, 赖伟山, 周云, 等. 新型预制装配式消能减震混凝土框架节点抗震性能试验研究[J]. 土木工程学报, 2015, 48(9): 23-30. DOI:10.15951/j.tmgcxb.2015.09.003.
Wu C X, Lai W S, Zhou Y, et al. Experimental study on seismic behaviors of new energy-dissipative prefabricated concrete frame structure joints[J]. China Civil Engineering Journal, 2015, 48(9): 23-30. DOI:10.15951/j.tmgcxb.2015.09.003. (in Chinese)
[9] 韩建强, 裴亚晖, 杨娜, 等. 附加阻尼器的预应力装配框架节点试验研究[J]. 建筑结构, 2015, 45(12): 61-64. DOI:10.19701/j.jzjg.2015.12.012.
Han J Q, Pei Y H, Yang N, et al. Experimental study on the node of prestressed assembly frame with additional dampers[J]. Building Structure, 2015, 45(12): 61-64. DOI:10.19701/j.jzjg.2015.12.012. (in Chinese)
[10] 王晨. 预制装配梁端钢板耗能铰节点及其弱梁强柱框架抗震性能[D]. 哈尔滨: 哈尔滨工业大学, 2016.
  Wang C. Seismic performance of prefabricated beam-to-column connection with hinge and energy-dissipating plates and the weak beam strong column frames[D]. Harbin: Harbin Institute of Technology, 2016.(in Chinese)
[11] 石永久, 王佼姣, 王元清,等. 循环荷载下低屈服点钢材LYP225的力学性能[J]. 东南大学学报(自然科学版), 2014,44(6):1260-1265.
  Shi Y J, Wang J J, Wang Y Q, et al. Mechanical performance of low-yield-point steel LYP225 under cyclic loading [J]. Journal of Southeast University(Natural Science Edition), 2014, 44(6):1260-1265.(in Chinese)

相似文献/References:

[1]马宏伟,姜维山,于庆荣,等.连接钢筋传力的组合梁及连续复合螺旋箍混凝土柱节点的研究[J].东南大学学报(自然科学版),2002,32(5):741.[doi:10.3969/j.issn.1001-0505.2002.05.014]
 Ma Hongwei,Jiang Weishan,Yu Qingrong,et al.Study on a type of reinforced bar transmitting force’s joint of composite beam and continuous compound spiral hoop reinforced concrete column[J].Journal of Southeast University (Natural Science Edition),2002,32(3):741.[doi:10.3969/j.issn.1001-0505.2002.05.014]
[2]刘璐,吴斌,李伟,等.一种新型自复位防屈曲支撑的拟静力试验[J].东南大学学报(自然科学版),2012,42(3):536.[doi:10.3969/j.issn.1001-0505.2012.03.028]
 Liu Lu,Wu Bin,Li Wei,et al.Cyclic tests of novel self-centering buckling-restrained brace[J].Journal of Southeast University (Natural Science Edition),2012,42(3):536.[doi:10.3969/j.issn.1001-0505.2012.03.028]
[3]余瑞,应惠清,陈敏,等.新型装配-现浇式密柱结构体系抗震性能试验研究[J].东南大学学报(自然科学版),2013,43(1):174.[doi:10.3969/j.issn.1001-0505.2013.01.033]
 Yu Rui,Ying Huiqing,Chen Min,et al.Test study on seismic behavior of new structure with assembly-situ wall[J].Journal of Southeast University (Natural Science Edition),2013,43(3):174.[doi:10.3969/j.issn.1001-0505.2013.01.033]
[4]李秉南,戴航,张继文.高速铁路HRBF500钢筋混凝土圆端形桥墩抗震性能试验研究[J].东南大学学报(自然科学版),2014,44(4):832.[doi:10.3969/j.issn.1001-0505.2014.04.027]
 Li Bingnan,Dai Hang,Zhang Jiwen.Experimental study on seismic behavior of HRBF500 rebar reinforced round-ended high-speed railway bridge piers[J].Journal of Southeast University (Natural Science Edition),2014,44(3):832.[doi:10.3969/j.issn.1001-0505.2014.04.027]
[5]吴函恒,周天华,吕晶.钢框架-装配式混凝土抗侧力墙板结构受力性能[J].东南大学学报(自然科学版),2016,46(1):118.[doi:10.3969/j.issn.1001-0505.2016.01.020]
 Wu Hanheng,Zhou Tianhua,Lü Jing.Mechanical behavior of steel frame-fabricated concrete lateral force resisting wall structures[J].Journal of Southeast University (Natural Science Edition),2016,46(3):118.[doi:10.3969/j.issn.1001-0505.2016.01.020]
[6]杨晓燕,冯玉龙,吴京,等.底部带屈曲约束支撑的摇摆桁架抗震性能试验研究[J].东南大学学报(自然科学版),2018,48(2):303.[doi:10.3969/j.issn.1001-0505.2018.02.018]
 Yang Xiaoyan,Feng Yulong,Wu Jing,et al.Experimental study on seismic performance of hinged truss with buckling-restrained braces at base[J].Journal of Southeast University (Natural Science Edition),2018,48(3):303.[doi:10.3969/j.issn.1001-0505.2018.02.018]
[7]葛琪,熊峰,何涛.钢板混凝土组合墙试验和有限元分析[J].东南大学学报(自然科学版),2018,48(5):885.[doi:10.3969/j.issn.1001-0505.2018.05.016]
 Ge Qi,Xiong Feng,He Tao.Testing and finite element analysis on steel-plate concrete composite wall[J].Journal of Southeast University (Natural Science Edition),2018,48(3):885.[doi:10.3969/j.issn.1001-0505.2018.05.016]
[8]杜一鹏,郝际平,于金光,等.钢板剪力墙结构抗震加固后性能试验研究[J].东南大学学报(自然科学版),2019,49(3):420.[doi:10.3969/j.issn.1001-0505.2019.03.002]
 Du Yipeng,Hao Jiping,Yu Jinguang,et al.Experimental study on performance of steel plate shear wall after seismic upgrading[J].Journal of Southeast University (Natural Science Edition),2019,49(3):420.[doi:10.3969/j.issn.1001-0505.2019.03.002]

备注/Memo

备注/Memo:
收稿日期: 2018-11-29.
作者简介: 范家俊(1990—),男,博士生;吴刚(联系人),男,博士,教授,博士生导师,g.wu@seu.edu.cn.
基金项目: 国家重点研发计划资助项目(2016YFC0701400)、国家自然科学基金资助项目(51525801).
引用本文: 范家俊,吴刚,冯德成,等.新型消能减震阻尼器滞回性能试验研究及有限元分析[J].东南大学学报(自然科学版),2019,49(3):413-419. DOI:10.3969/j.issn.1001-0505.2019.03.001.
更新日期/Last Update: 2019-05-20