[1]郭乾,杜广印,高常辉,等.黏土夹层对共振法加固效果影响试验研究[J].东南大学学报(自然科学版),2019,49(3):427-432.[doi:10.3969/j.issn.1001-0505.2019.03.003]
 Guo Qian,Du Guangyin,Gao Changhui,et al.Experimental study on influence of clay lens on compaction effect of resonant compaction method[J].Journal of Southeast University (Natural Science Edition),2019,49(3):427-432.[doi:10.3969/j.issn.1001-0505.2019.03.003]
点击复制

黏土夹层对共振法加固效果影响试验研究()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
49
期数:
2019年第3期
页码:
427-432
栏目:
土木工程
出版日期:
2019-05-20

文章信息/Info

Title:
Experimental study on influence of clay lens on compaction effect of resonant compaction method
作者:
郭乾1杜广印1高常辉1罗涛2谢羚3
1东南大学岩土工程研究所, 南京 210096; 2 中设设计集团股份有限公司, 南京 210005; 3苏州市公路管理处, 苏州 215007
Author(s):
Guo Qian1 Du Guangyin1 Gao Changhui1 Luo Tao2 Xie Ling3
1Institute of Geotechnical Engineering, Southeast University, Nanjing 210096, China
2China Design Group Co., Ltd., Nanjing 210005, China
3Suzhou Highway Management Office, Suzhou 215007, China
关键词:
十字翼共振法 土颗粒峰值振动加速度 轻型动力触探 砂土液化 标准贯入试验
Keywords:
resonant compaction method peak vibration acceleration of soil particles light weight dynamic cone penetration test sand liquefaction standard cone penetration test
分类号:
TU411
DOI:
10.3969/j.issn.1001-0505.2019.03.003
摘要:
为研究黏土夹层对共振法处理可液化砂土地基效果的影响,按比例制备十字翼振杆并开展相关模型试验.根据加固前后轻型动力触探击数N10、土颗粒峰值振动加速度a和砂土相对密度Dr的变化,分析了黏土夹层对土体强度、能量传递规律及密实程度的影响.结果表明,N10a值随着测点与振杆径向距离的增加而减小.受黏土夹层影响,加固前后土体强度增长幅度降低64%~127%,a值也相应减少,且振动有效影响半径由0.4 m减少为0.3 m,砂土相对密实度增长幅度下降4.2%~9.7%.现场标贯试验及地表峰值振速监测结果进一步验证了模型试验的可靠性.地基中黏土夹层可使振点处的排水通道受阻,降低土体排水固结及能量传递效率,减弱了加固效果.
Abstract:
To investigate the influence of clay lens on the compaction effect of using the resonant compaction method to treat liquefiable sandy ground, a small scale crisscross-sharped probe model was prepared and laboratory tests were carried out. The effects of clay lens on the soil strength, the energy transferring law and the compactness were analyzed according to the change of the light dynamic cone penetration number N10, the relative density Dr, and the peak vibration acceleration of soil particles a, measured before and after the tests. The results show that N10 and a decrease with the increase of the radial distance between the measure point and the compaction point. Due to the existence of clay lens, the increment of N10 decreases by 64% to 127% before and after reinforcement, and the value of a decreases accordingly. The effective radius for compaction decreases from 0.4 to 0.3 m. The increment of Dr decreases by 4.2% to 9.7%. The reliability of the test is verified by the standard cone penetration tests and the peak ground velocity measurement from the field tests. The clay lens can impede the water jetting through the drainage channel,decrease the efficiency of consolidation and energy transferring during vibro-compaction, and weaken the compaction effect.

参考文献/References:

[1] 陈国兴, 顾小锋, 常向东, 等. 1989~2011期间8次强地震中抗液化地基处理成功案例的回顾与启示[J]. 岩土力学, 2015, 36(4): 1102-1118. DOI:10.16285/j.rsm.2015.04.027.
Chen G X, Gu X F, Chang X D, et al. Review and implication of successful ground improvement cases about mitigating soil liquefaction induced by 8 strong earthquakes from 1989 to 2011[J]. Rock and Soil Mechanics, 2015, 36(4): 1102-1118. DOI:10.16285/j.rsm.2015.04.027. (in Chinese)
[2] Adalier K, Elgamal A. Mitigation of liquefaction and associated ground deformations by stone columns [J]. Engineering Geology, 2004, 72(3/4): 275-291.
[3] Harada K, Ohbayashi J. Development and improvement effectiveness of sand compaction pile method as a countermeasure against liquefaction [J]. Soils and Foundations, 2017. 57(6): 980-987.
[4] Martin J R Ⅱ, Olgun C G, Mitchell J K, et al. High-modulus columns for liquefaction mitigation [J]. Journal of Geotechnical and Geoenvironmental Engineering, 2004, 130(6): 561-571. DOI:10.1061/(ASCE)1090-0241(2004)130:6(561).
[5] Shen M F, Martin J R, Ku C S, et al. A case study of the effect of dynamic compaction on liquefaction of reclaimed ground[J].Engineering Geology, 2018, 240: 48-61. DOI:10.1016/j.enggeo.2018.04.003.
[6] Hiller D M, Hope V S.Groundborne vibration generated by mechanized construction activities[J]. Proceedings of the Institution of Civil Engineers-Geotechnical Engineering, 1998, 131(4): 223-232. DOI:10.1680/igeng.1998.30714.
[7] Hwang J H,Tu T Y. Ground vibration due to dynamic compaction[J]. Soil Dynamics and Earthquake Engineering, 2006, 26(5): 337-346. DOI:10.1016/j.soildyn.2005.12.004.
[8] Holeyman A. An earthquake engineering approach to the vibro-compaction of soils [C]// Proceedings of the 8th ICSMFE. Hamburg, Germany, 1997:5-15.
[9] Bo M W,Arulrajah A, Horpibulsuk S, et al. Densification of land reclamation sands by deep vibratory compaction techniques[J]. Journal of Materials in Civil Engineering, 2014, 26(8): 06014016. DOI:10.1061/(asce)mt.1943-5533.0001010.
[10] Massarsch K. Deep soil compaction using vibratory probes [M]// Esrig M, Bachus R. Deep Foundation Improvements: Design, Construction, and Testing. Philadelphia,PA,USA: ASTM, 1991: 297-319. DOI: 10.1520/STP25067S.
[11] Massarsch K R, Fellenius B H. Vibratory compaction of coarse-grained soils[J]. Canadian Geotechnical Journal, 2002, 39(3): 695-709. DOI:10.1139/t02-006.
[12] 刘松玉, 程远. 共振法加固公路可液化地基试验[J]. 中国公路学报, 2012, 25(6): 24-29. DOI:10.19721/j.cnki.1001-7372.2012.06.004.
Liu S Y, Cheng Y. Resonance compaction method for highway ground improvement at liquefaction site[J]. China Journal of Highway and Transport, 2012, 25(6): 24-29. DOI:10.19721/j.cnki.1001-7372.2012.06.004. (in Chinese)
[13] 罗涛, 杜广印, 程远, 等. 十字翼共振法处理液化地基的室内模型试验研究[J]. 工程地质学报, 2017, 25(S1): 484-489.
  Luo T, Du G Y, Chen Y, et al. Model test study of treatment on liquefiable ground using resonant method [J]. Journal of Engineering Geology, 2017, 25(S1): 484-489.(in Chinese)
[14] 田卿燕, 刘仰韶, 吕建兵. 轻型动力触探法与静力触探法检测粗砂相对密实度的相关性研究[J]. 岩土力学, 2009, 30(9): 2747-2752. DOI:10.3969/j.issn.1000-7598.2009.09.035.
Tian Q Y, Liu Y S, Lü J B. Correlation study of light dynamic penetration test and cone penetration test in testing coarse sand[J]. Rock and Soil Mechanics, 2009, 30(9): 2747-2752. DOI:10.3969/j.issn.1000-7598.2009.09.035. (in Chinese)
[15] 耿光旭, 李华平, 刘金川. 施工振动对环境影响的监测[J]. 勘察科学技术, 2004(4): 54-57. DOI:10.3969/j.issn.1001-3946.2004.04.017.
Geng G X, Li H P, Liu J C. Monitoring of construction vibration to environment[J]. Site Investigation Science and Technology, 2004(4): 54-57. DOI:10.3969/j.issn.1001-3946.2004.04.017. (in Chinese)
[16] 谢羚, 杜广印, 缪冬冬, 等. 十字振动翼共振法处理滨海相可液化地基的效果评价[J]. 工程地质学报, 2015, 23(S1): 695-698.
  Xie L, Du G Y, Miao D D, et al. Effect evaluation of treatment on coastal liquefiable ground using resonant compaction method [J]. Journal of Engineering Geology, 2015, 23(S1): 695-698.(in Chinese)

备注/Memo

备注/Memo:
收稿日期: 2018-10-18.
作者简介: 郭乾(1983—),男,博士生;杜广印(联系人),男,博士,副教授,博士生导师,guangyin@seu.edu.cn.
基金项目: 国家自然科学基金资助项目(41372308).
引用本文: 郭乾,杜广印,高常辉,等.黏土夹层对共振法加固效果影响试验研究[J].东南大学学报(自然科学版),2019,49(3):427-432. DOI:10.3969/j.issn.1001-0505.2019.03.003.
更新日期/Last Update: 2019-05-20