[1]黄兴淮,徐赵东,贺泽峰,等.黏弹性材料等效标准固体模型的时域延拓方法[J].东南大学学报(自然科学版),2019,49(3):440-445.[doi:10.3969/j.issn.1001-0505.2019.03.005]
 Huang Xinghuai,Xu Zhaodong,He Zefeng,et al.Time domain extension method for equivalent standard solid model of viscoelastic materials[J].Journal of Southeast University (Natural Science Edition),2019,49(3):440-445.[doi:10.3969/j.issn.1001-0505.2019.03.005]
点击复制

黏弹性材料等效标准固体模型的时域延拓方法()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
49
期数:
2019年第3期
页码:
440-445
栏目:
土木工程
出版日期:
2019-05-20

文章信息/Info

Title:
Time domain extension method for equivalent standard solid model of viscoelastic materials
作者:
黄兴淮1徐赵东1贺泽峰2葛腾1
1 东南大学混凝土及预应力混凝土结构教育部重点实验室, 南京210096; 2 西安建筑科技大学土木工程学院, 西安710055
Author(s):
Huang Xinghuai1 Xu Zhaodong1 He Zefeng2 Ge Teng1
1 Key laboratory of Concrete and Pre-stressed Concrete Structure of Ministry of Education, Southeast University, Nanjing 210096, China
2 College of Civil Engineering, Xi’an University of Architecture and Technology, Xi’an 710055, China
关键词:
等效标准固体模型 黏弹性材料 时域延拓方法 地震作用 等效线性化方法
Keywords:
equivalent standard solid model viscoelastic material time domain extension method earthquake excitation equivalent linear method
分类号:
TU318.1
DOI:
10.3969/j.issn.1001-0505.2019.03.005
摘要:
为了精确计算黏弹性阻尼器在任意荷载作用下的时域动力响应, 提出了一种针对黏弹性材料等效标准固体模型的时域延拓方法. 该方法首先将频域内的等效标准固体模型延拓到拉氏域内, 再采用高精度拉氏逆变换数值求解方法将拉氏域表达式转换到时域, 得到黏弹性阻尼器的时域动力响应. 针对无锡减震器厂生产的9050A型号黏弹性阻尼材料的计算结果表明:在正弦激励下, 采用时域延拓法计算的储能模量G1的最大误差为0.005 4%, 损耗因子η的最大误差为0.279 7%; 在随机荷载激励下, 相比于等效线性化近似方法, 采用时域延拓法计算得到的El Centro和Kobe地震波作用下最大出力的计算精度提高22.2%以上;所提方法避免建立复杂的时域微分方程,简化了计算过程.
Abstract:
To accurately calculate the dynamic response of viscoelastic dampers in time domain under arbitrary excitations, a time domain extension method for the equivalent standard solid model of viscoelastic materials is proposed. First, the equivalent standard solid mode in frequency domain is extended to Laplace domain. Then, the Laplace expression is transformed into time domain by the numerical high-precision Laplace inverse transformation method, and the time domain response of the viscoelastic damper can be obtained. The results of 9050A viscoelastic damping materials produced by Wuxi Shock Absorber Factory show that under harmonic excitation, the maximum error of the storage module G1 is 0.005 4% and the maximum error of loss factor η is 0.279 7% by the time domain extension method. As for random excitation, compared with the equivalent linearization approximation method, the calculation accuracy of the maximum force under El Centro and Kobe earthquake excitations by the time domain extension method is improved by more than 22.2%. The proposed method avoids the establishment of complex time-domain differential equations and simplifies the calculation process.

参考文献/References:

[1] 杨挺青. 粘弹性力学 [M]. 武汉: 华中理工大学出版社, 1990: 267.
[2] 周颖, 龚顺明, 吕西林. 带粘弹性阻尼器结构振动台试验设计: 基于OpenSees的阻尼器尺寸选择[J]. 防灾减灾工程学报, 2014, 34(3): 308-313. DOI:10.13409/j.cnki.jdpme.2014.03.012.
Zhou Y, Gong S M, Lü X L. Design of shaking table test on steel structure added with viscoelastic dampers: Size selection of dampers based on OpenSees[J]. Journal of Disaster Prevention and Mitigation Engineering, 2014, 34(3): 308-313. DOI:10.13409/j.cnki.jdpme.2014.03.012. (in Chinese)
[3] 李军强, 刘宏昭, 王忠民. 线性粘弹性本构方程及其动力学应用研究综述[J]. 振动与冲击, 2005, 24(2): 116-121. DOI:10.3969/j.issn.1000-3835.2005.02.030.
Li J Q, Liu H Z, Wang Z M. Review on the linear constitutive equation and its dynamics applications to viscoelastic materials[J]. Journal of Vibration and Shock, 2005, 24(2): 116-121. DOI:10.3969/j.issn.1000-3835.2005.02.030. (in Chinese)
[4] 周云. 粘弹性阻尼减震结构设计理论及应用[M]. 武汉: 武汉理工大学出版社, 2013: 227.
[5] Xu Z D, Wang D X, Shi C F. Model, tests and application design for viscoelastic dampers[J].Journal of Vibration and Control, 2011, 17(9): 1359-1370. DOI:10.1177/1077546310373617.
[6] 欧进萍, 龙旭. 速度相关型耗能减振体系参数影响的复模量分析[J]. 工程力学, 2004, 21(4): 6-12, 5. DOI:10.3969/j.issn.1000-4750.2004.04.002.
Ou J P, Long X. Parameter analysis of passive energy dissipation systems with velocity-dependent dampers[J]. Engineering Mechanics, 2004, 21(4): 6-12, 5. DOI:10.3969/j.issn.1000-4750.2004.04.002. (in Chinese)
[7] Xu Z D, Xu C, Hu J. Equivalent fractional Kelvin model and experimental study on viscoelastic damper[J].Journal of Vibration and Control, 2015, 21(13): 2536-2552. DOI:10.1177/1077546313513604.
[8] 张为民, 张淳源. 分数指数模型的热力学分析及其应用[J]. 工程力学, 2002, 19(2): 95-99. DOI:10.3969/j.issn.1000-4750.2002.02.019.
Zhang W M, Zhang C Y. Thermodynamic analysis and application of fractional exponential model[J]. Engineering Mechanics, 2002, 19(2): 95-99. DOI:10.3969/j.issn.1000-4750.2002.02.019. (in Chinese)
[9] McTavish D J, Hughes P C. Modeling of linear viscoelastic space structures[J].Journal of Vibration and Acoustics, 1993, 115(1): 103. DOI:10.1115/1.2930302.
[10] Xu Z D, Wang S A, Xu C. Experimental and numerical study on long-span reticulate structure with multidimensional high-damping earthquake isolation devices[J].Journal of Sound and Vibration, 2014, 333(14): 3044-3057. DOI:10.1016/j.jsv.2014.02.013.
[11] Xu Z D,Gai P P, Zhao H Y, et al. Experimental and theoretical study on a building structure controlled by multi-dimensional earthquake isolation and mitigation devices[J]. Nonlinear Dynamics, 2017, 89(1): 723-740. DOI:10.1007/s11071-017-3482-5.
[12] Mehrabi M H, Suhatril M, Ibrahim Z, et al. Modeling of a viscoelastic damper and its application in structural control[J]. PLoS One, 2017, 12(6): e0176480. DOI:10.1371/journal.pone.0176480.
[13] Bhatti A Q. Performance of viscoelastic dampers(VED)under various temperatures and application of magnetorheological dampers(MRD)for seismic control of structures[J].Mechanics of Time-Dependent Materials, 2013, 17(3): 275-284. DOI:10.1007/s11043-012-9180-2.
[14] 徐赵东, 赵鸿铁, 周云. 粘弹性阻尼器的等效标准固体模型[J]. 建筑结构, 2001, 31(3): 67-69, 71. DOI:10.19701/j.jzjg.2001.03.027.
Xu Z D, Zhao H T, Zhou Y. Equivalent standard solid model of the viscoelastic damper[J]. Building Structure, 2001, 31(3): 67-69, 71. DOI:10.19701/j.jzjg.2001.03.027. (in Chinese)
[15] Valsa J, Branˇ/cik L. Approximate formulae for numerical inversion of Laplace transforms[J]. International Journal of Numerical Modelling: Electronic Networks, Devices and Fields, 1998, 11(3): 153-166. DOI:10.1002/(sici)1099-1204(199805/06)11:3153::aid-jnm299>3.0.co;2-c.

相似文献/References:

[1]郭一峰,徐赵东.一种考虑位移幅值影响的黏弹性材料力学模型[J].东南大学学报(自然科学版),2011,41(1):164.[doi:10.3969/j.issn.1001-0505.2011.01.032]
 Guo Yifeng,Xu Zhaodong.Mechanical model on viscoelastic material with consideration of displacement amplitude[J].Journal of Southeast University (Natural Science Edition),2011,41(3):164.[doi:10.3969/j.issn.1001-0505.2011.01.032]
[2]戴军,徐赵东,盖盼盼.频率依赖性对黏弹性调谐质量阻尼器的影响[J].东南大学学报(自然科学版),2018,48(2):282.[doi:10.3969/j.issn.1001-0505.2018.02.015]
 Dai Jun,Xu Zhaodong,Gai Panpan.Effects of frequency-dependence on viscoelastic tuned mass dampers[J].Journal of Southeast University (Natural Science Edition),2018,48(3):282.[doi:10.3969/j.issn.1001-0505.2018.02.015]

备注/Memo

备注/Memo:
收稿日期: 2018-10-15.
作者简介: 黄兴淮(1986—), 男,博士,讲师; 徐赵东(联系人),男,博士, 教授, 博士生导师,zhdxu@163.com.
基金项目: 国家自然科学基金资助项目(56237845)、国家重点研发计划资助项目(2016YFE0200500,2016YFE0119700)、中央高校基本科研业务费专项资金资助项目(2242017K40215)、江苏省自然科学基金资助项目(BK20170684).
引用本文: 黄兴淮,徐赵东,贺泽峰,等.黏弹性材料等效标准固体模型的时域延拓方法[J].东南大学学报(自然科学版),2019,49(3):440-445. DOI:10.3969/j.issn.1001-0505.2019.03.005.
更新日期/Last Update: 2019-05-20