[1]张元海,王妍,夏文传,等.徐变对PC连续梁支座沉降附加内力的影响[J].东南大学学报(自然科学版),2019,49(3):453-459.[doi:10.3969/j.issn.1001-0505.2019.03.007]
 Zhang Yuanhai,Wang Yan,Xia Wenchuan,et al.Influence of creep on additional internal force of PC continuous beam due to bearing settlement[J].Journal of Southeast University (Natural Science Edition),2019,49(3):453-459.[doi:10.3969/j.issn.1001-0505.2019.03.007]
点击复制

徐变对PC连续梁支座沉降附加内力的影响()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
49
期数:
2019年第3期
页码:
453-459
栏目:
交通运输工程
出版日期:
2019-05-20

文章信息/Info

Title:
Influence of creep on additional internal force of PC continuous beam due to bearing settlement
作者:
张元海王妍夏文传苏彦江
兰州交通大学土木工程学院, 兰州 730070
Author(s):
Zhang Yuanhai Wang Yan Xia Wenchuan Su Yanjiang
School of Civil Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
关键词:
PC连续梁 徐变 次内力 支座沉降 体系转换
Keywords:
prestressed concrete continuous beam creep secondary internal force bearing settlement system transformation
分类号:
U448.215
DOI:
10.3969/j.issn.1001-0505.2019.03.007
摘要:
为分析徐变对PC连续梁支座沉降附加内力的影响,提出一种通过体系转换描述连续梁支座沉降附加内力状态的思路,借助现行桥梁设计规范给出的连续梁徐变内力重分布公式以及徐变应变的积分表达式,推导出老化系数的计算公式.假设支座沉降的发展规律与混凝土徐变发展规律相同,建立考虑徐变影响的总变位协调方程.选取咸河大桥5跨连续梁为算例,分别计算缓慢沉降和瞬时沉降条件下的徐变次弯矩及最不利弯矩.结果表明:徐变对连续梁支座沉降引起的弹性弯矩有很大的消减作用,使实际最终弯矩不足弹性弯矩的1/2,瞬时沉降时的徐变次弯矩可达到缓慢沉降时的3倍;连续梁支座沉降引起的徐变次弯矩及最不利弯矩均与抗弯刚度成正比,与跨度的平方成反比;连续梁支座沉降最不利弯矩的峰值发生在中间支座截面处,其值为第一个内支座截面最不利弯矩的1.25倍.
Abstract:
In order to analyze the effect of creep on the additional internal force caused by bearing settlement of prestressed concrete continuous beam, a way to reflect the internal force state of continuous beam due to bearing settlement through system transformation is proposed. The calculation formula of aging coefficient is derived by applying the internal force redistribution formula of continuous beam due to creep in current bridge design codes and the integral expression for creep strain. Assuming that the development law of bearing settlement is the same as that of concrete creep, the compatibility equation for total displacement considering the influence of creep is established. The five-span continuous beam of Xianhe bridge is selected as an example, and the creep-induced secondary bending moment and the most unfavorable bending moment under slow settlement and immediate settlement are calculated, respectively. It is shown that creep greatly reduces the elastic bending moment caused by the bearing settlement of the continuous beam, making the actual final bending moment less than half of the elastic bending moment. The creep-induced secondary bending moment under immediate settlement can reach three times that under slow settlement. Both the secondary bending moment and the most unfavorable bending moment caused by the bearing settlement of the continuous beam are proportional to the flexural rigidity of cross section and inverse proportional to the square of span. The peak value of the most unfavorable bending moment caused by the bearing settlement of the continuous beam occurs at the middle support cross sections and equals 1.25 times that at the first inner support cross sections.

参考文献/References:

[1] 周履, 陈永春. 收缩徐变[M]. 北京:中国铁道出版社, 1994: 327-362.
[2] Gardner N J, Lockman M J. Design provisions for drying shrinkage and creep of normal-strength concrete[J]. ACI Materials Journal, 2001,98(2):159-167.
[3] Ojdrovic R P, Zarghamee M S. Concrete creep and shrinkage prediction from short-term tests[J]. ACI Materials Journal, 1996, 93(2):169-177. DOI: 10.14359/1416.
[4] Gardner N J, Zhao J W. Creep and shrinkage revisited[J]. ACI Materials Journal, 1993, 90(3): 236-246. DOI: 10.14359/3875.
[5] 韩伟威, 吕毅刚. 混凝土收缩徐变预测模型试验研究[J]. 中南大学学报(自然科学版), 2016,47(10): 3515-3522. DOI: 10.11817/j.issn.1672-7207.2016.10.031.
Han W W, Lü Y G. Experimental research on prediction model of concrete shrinkage and creep[J]. Journal of Central South University(Science and Technology), 2016, 47(10): 3515-3522. DOI:10.11817/j.issn.1672-7207.2016.10.031. (in Chinese)
[6] Pan Z F, Lü Z T, Fu C C. Experimental study on creep and shrinkage of high strength plain concrete and reinforced concrete[J]. Advances in Structural Engineering, 2011, 14(2):235-247. DOI:10.1260/1369-4332.14.2.235.
[7] 刘沐宇, 李倩, 黄岳斌, 等. 港珠澳大桥钢-混组合连续梁桥超长时间收缩徐变效应[J]. 中国公路学报, 2016,29(12): 60-69.
  Liu M Y, Li Q, Huang Y B, et al. Ultra-long time performance of steel-concrete composite continuous beam in Hong Kong-Zhuhai-Macao bridge with creep and shrinkage of concrete slabs[J]. China Journal of Highway and Transport, 2016, 29(12): 60-69.(in Chinese)
[8] 张运涛, 孟少平. 基于响应面法的大跨连续刚构桥长期变形预测[J]. 土木工程学报, 2011,44(8): 102-106. DOI: 10.15951/j.tmgcxb.2011.08.009.
Zhang Y T, Meng S P. Prediction of long-term deformation of long-span continuous rigid-frame bridges using the response surface method[J]. China Civil Engineering Journal, 2011, 44(8): 102-106. DOI:10.15951/j.tmgcxb.2011.08.009. (in Chinese)
[9] 卢志芳, 刘沐宇. 徐变参数随机性对预应力混凝土桥梁长期变形的影响分析[J]. 武汉理工大学学报, 2013,35(7): 94-98. DOI: 10.3963/j.issn.1671-4431.2013.07.019.
Lu Z F, Liu M Y. Influence of stochastic creep parameters on long-term deformation of prestressed concrete bridge[J]. Journal of Wuhan University of Technology, 2013, 35(7): 94-98. DOI:10.3963/j.issn.1671-4431.2013.07.019. (in Chinese)
[10] 张运波, 宋基军, 陈伟. 高铁连续梁收缩徐变及长期挠度变化研究[J]. 铁道工程学报, 2015(5): 49-53. DOI: 10.3969/j.issn.1006-2106.2015.05.009.
Zhang Y B, Song J J, Chen W. Research on the shrinkage and creep and changes of long-term deflection of high-speed rail continuous beam [J]. Journal of Railway Engineering Society, 2015(5): 49-53. DOI:10.3969/j.issn.1006-2106. 2015.05.009. (in Chinese)
[11] 方志, 李艳, 吴鹏扬. 先简支后连续混凝土桥梁徐变影响的参数分析[J]. 桥梁建设, 2003(4): 19-22. DOI: 10.3969/j.issn.1003-4722.2003.04.006.
Fang Z, Li Y, Wu P Y. Parametric analysis of creep effect of concrete simply supported-to-continuous girder bridge [J]. Bridge Construction, 2003(4): 19-22. DOI:10.3969/j.issn.1003-4722.2003.04.006. (in Chinese)
[12] 孙永新, 蔺鹏臻. 考虑剪力滞效应的先简支后连续箱梁徐变效应分析[J]. 应用数学和力学, 2015,36(8): 855-864. DOI: 10.3879/j.issn.1000-0887.2015.08.007.
Sun Y X, Lin P Z. Creep analysis of simply supported-to-continuous box girders under shear lag effect [J]. Applied Mathematics and Mechanics, 2015, 36(8): 855-864. DOI:10.3879/j.issn.1000-0887.2015.08.007. (in Chinese)
[13] Xiang Y Q, He X Y. Short- and long-term analyses of shear lag in RC box girders considering axial equilibrium [J]. Structural Engineering and Mechanics, 2017, 62(6): 725-737.
[14] Wang S Q, Fu C C. Simplification of creep and shrinkage analysis of segmental bridges [J]. Journal of Bridge Engineering, 2015, 20(8): B6014001. DOI:10.1061/(asce)be.1943-5592.0000728.
[15] Pisani M A. Methods for creep analysis of thin-walled precast prestressed concrete beams[J]. Journal of Engineering Mechanics, 2017, 143(2): 04016113. DOI:10.1061/(asce)em.1943-7889.0001191.
[16] 曹国辉, 阳亮, 张锴, 等. 配筋对混凝土徐变的影响分析[J]. 中南大学学报(自然科学版), 2017,48(2): 506-511. DOI: 10.11817/j.issn.1672-7207.2017.02.031.
Cao G H, Yang L, Zhang K, et al. Analysis of reinforcement influence on concrete creep[J]. Journal of Central South University(Science and Technology), 2017, 48(2): 506-511. DOI:10.11817/j.issn.1672-7207.2017.02.031. (in Chinese)

相似文献/References:

[1]王文炜,何初生,冯竹林,等.钢-混凝土组合梁混凝土收缩徐变的增量微分方法[J].东南大学学报(自然科学版),2010,40(6):1252.[doi:10.3969/j.issn.1001-0505.2010.06.024]
 Wang Wenwei,He Chusheng,Feng Zhulin,et al.Incremental differential modeling of creep and shrinkage of steel-concrete composite beams[J].Journal of Southeast University (Natural Science Edition),2010,40(3):1252.[doi:10.3969/j.issn.1001-0505.2010.06.024]
[2]叶列平,孙海林,丁建彤.HSLWAC梁收缩和徐变预应力损失试验[J].东南大学学报(自然科学版),2007,37(1):94.[doi:10.3969/j.issn.1001-0505.2007.01.021]
 Ye Lieping,Sun Hailin,Ding Jiantong.Time dependent prestress losses due to creep and shrinkage in high-strength lightweight concrete beams[J].Journal of Southeast University (Natural Science Edition),2007,37(3):94.[doi:10.3969/j.issn.1001-0505.2007.01.021]
[3]秦鸿根,潘钢华,孙伟.掺粉煤灰高性能桥用混凝土变形性能研究[J].东南大学学报(自然科学版),2002,32(5):779.[doi:10.3969/j.issn.1001-0505.2002.05.022]
 Qin Honggen,Pan Ganghua,Sun Wei.Study on the deformation properties of the high performance concrete with fly ash used in bridge[J].Journal of Southeast University (Natural Science Edition),2002,32(3):779.[doi:10.3969/j.issn.1001-0505.2002.05.022]
[4]温庆杰,叶见曙.新旧钢筋混凝土梁横向拼接的收缩徐变效应分析[J].东南大学学报(自然科学版),2006,36(4):596.[doi:10.3969/j.issn.1001-0505.2006.04.021]
 Wen Qingjie,Ye Jianshu.Analysis of shrinkage and creep effects in widening reinforced concrete girder[J].Journal of Southeast University (Natural Science Edition),2006,36(3):596.[doi:10.3969/j.issn.1001-0505.2006.04.021]
[5]张恒平,猪股俊司,青木(彳散)彦.混凝土斜拉桥用悬臂法施工的徐变分析[J].东南大学学报(自然科学版),1988,18(1):105.[doi:10.3969/j.issn.1001-0505.1988.01.012]
 Zhang Hengping (Departement of Civil Engineering) Shunji Inomata Tetsuhiko Aoki (Aizhi Institute of Technology,Japan).Creep Analysis for Cable Stayed Concrete Bridge during Cantilever-Construction[J].Journal of Southeast University (Natural Science Edition),1988,18(3):105.[doi:10.3969/j.issn.1001-0505.1988.01.012]
[6]王文炜,翁昌年,杨威.新老混凝土组合梁混凝土收缩徐变试验研究[J].东南大学学报(自然科学版),2008,38(3):505.[doi:10.3969/j.issn.1001-0505.2008.03.028]
 Wang Wenwei,Weng Changnian,Yang Wei.Experimental study on creep and shrinkage of old and new concrete composite beams[J].Journal of Southeast University (Natural Science Edition),2008,38(3):505.[doi:10.3969/j.issn.1001-0505.2008.03.028]
[7]范玉辉,肖建庄,曹明.再生骨料混凝土徐变特性基础试验[J].东南大学学报(自然科学版),2014,44(3):638.[doi:10.3969/j.issn.1001-0505.2014.03.033]
 Fan Yuhui,Xiao Jianzhuang,Cao Ming.Fundamental test on creep characteristics of recycled aggregate concrete[J].Journal of Southeast University (Natural Science Edition),2014,44(3):638.[doi:10.3969/j.issn.1001-0505.2014.03.033]

备注/Memo

备注/Memo:
收稿日期: 2018-08-28.
作者简介: 张元海(1965—),男,博士,教授,博士生导师,zyh17012@163.com.
基金项目: 国家自然科学基金资助项目(51468032, 51268029).
引用本文: 张元海,王妍,夏文传,等.徐变对PC连续梁支座沉降附加内力的影响[J].东南大学学报(自然科学版),2019,49(3):453-459. DOI:10.3969/j.issn.1001-0505.2019.03.007.
更新日期/Last Update: 2019-05-20