[1]沈锐利,侯康,王路.三塔悬索桥结构竖向刚度及主缆抗滑需求[J].东南大学学报(自然科学版),2019,49(3):474-480.[doi:10.3969/j.issn.1001-0505.2019.03.010]
 Shen Ruili,Hou Kang,Wang Lu.Requirements of vertical stiffness and anti-slip safety for three-pylon suspension bridge[J].Journal of Southeast University (Natural Science Edition),2019,49(3):474-480.[doi:10.3969/j.issn.1001-0505.2019.03.010]
点击复制

三塔悬索桥结构竖向刚度及主缆抗滑需求()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
49
期数:
2019年第3期
页码:
474-480
栏目:
交通运输工程
出版日期:
2019-05-20

文章信息/Info

Title:
Requirements of vertical stiffness and anti-slip safety for three-pylon suspension bridge
作者:
沈锐利1侯康2王路1
1西南交通大学土木工程学院, 成都 610031; 2中交公路规划设计院有限公司, 北京 100088
Author(s):
Shen Ruili1 Hou Kang2 Wang Lu1
1School of Civil Engineering, Southwest Jiaotong University, Chengdu 610031, China
2CCCC Highway Consultants Co., Ltd., Beijing 100088, China
关键词:
多塔悬索桥 中塔效应 结构竖向刚度 抗滑安全系数 中塔纵向刚度 名义摩擦系数
Keywords:
multi-pylon suspension bridge mid-pylon effect vertical stiffness of structure anti-slip safety factor longitudinal stiffness of mid-pylon nominal friction coefficient
分类号:
U448.25
DOI:
10.3969/j.issn.1001-0505.2019.03.010
摘要:
为研究不同跨径三塔悬索桥对于结构竖向刚度及主缆抗滑安全的综合需求特征,构建了主跨500~1 500 m范围内的6座三塔悬索桥计算模型,通过改变中塔纵向刚度,对加劲梁竖向挠度及主缆抗滑安全系数进行了计算分析,并探讨了将主缆抗滑安全系数限值进行折减的合理性.研究表明:跨径越大的三塔悬索桥越易满足结构竖向刚度及主缆抗滑安全的要求,有效缓解了中塔效应问题;中塔纵向刚度对结构刚度、塔顶偏位及主缆抗滑安全系数均有较大影响,但该影响随中塔纵向刚度的提高而趋于恒定;适当增大缆-鞍间摩擦系数后,三塔悬索桥桥跨布置及中塔纵向刚度的合理设计区间大幅拓宽;杆系模型配合规范计算公式得出的主缆抗滑安全系数要比多尺度模型结果小21%~30%,因此建议可偏保守地对规范抗滑安全系数限值进行15%的折减,即由2.0降低至1.7.
Abstract:
To study the comprehensive requirements of vertical stiffness and anti-slip safety for three-pylon suspension bridge with different spans, the model of six three-pylon four-span suspension bridges distributed from 500 to 1 500 m was established. By the adjustment of the longitudinal stiffness of the mid-pylon, the vertical deflection of the girder and the anti-slip safety factor of the main cable were calculated and analyzed. The rationality of reducing the limits of the anti-slip safety factor was discussed. The results show that the larger three-pylon suspension bridges can satisfy the requirements of the deflection-span ratio and the anti-slip safety factor more easily, relieving the problem of the mid-pylon effect effectively. The longitudinal stiffness of mid-pylon has a great influence on the vertical stiffness, the longitudinal deviation of mid-pylon, and the anti-slip safety factor of the main cable, and these influences tend to be stable with the increase of the longitudinal stiffness of mid-pylon. With the increase of the friction coefficient between the main cable and the saddle, the applicable scope of the three-pylon suspension bridge and the longitudinal stiffness of the mid-pylon is expanded significantly. The anti-slip safety factor obtained by the bar system model cooperated with standard calculation formula is smaller by 21%—30% than that calculated from multi-scale refinement model. Therefore, it is suggested that a reduction of 15% can be carried out conservatively to the limit of the anti-slip safety factor calculated by the standard calculation formula; i.e., from 2.0 to 1.7.

参考文献/References:

[1] Thai H T, Choi D H. Advanced analysis of multi-span suspension bridges[J].Journal of Constructional Steel Research, 2013, 90: 29-41. DOI:10.1016/j.jcsr.2013.07.015.
[2] 王路, 沈锐利, 王昌将, 等. 悬索桥主缆与索鞍间侧向力理论计算方法与公式研究[J]. 土木工程学报, 2017, 50(12): 87-96. DOI:10.15951/j.tmgcxb.2017.12.011.
Wang L, Shen R L, Wang C J, et al. Theoretical calculation method and formula for lateral force between main cable and cable saddle for suspension bridge[J]. China Civil Engineering Journal, 2017, 50(12): 87-96. DOI:10.15951/j.tmgcxb.2017.12.011. (in Chinese)
[3] 侯康. 多塔悬索桥合理结构体系及结构适用性研究[D]. 成都: 西南交通大学, 2018.
  Hou K. Study on rational structural system and structural applicability of multi-pylon suspension bridge[D]. Chengdu: Southwest Jiaotong University, 2018.(in Chinese)
[4] 姜洋, 肖汝诚, 李扬, 等. 多塔悬索桥主缆与鞍座滑动失稳临界跨径[J]. 同济大学学报(自然科学版), 2012, 40(3): 331-337. DOI:10.3969/j.issn.0253-374x.2012.03.002.
Jiang Y, Xiao R C, Li Y, et al. Critical span for anti-slip stability between main cable and saddle of multi-span suspension bridges[J]. Journal of Tongji University(Natural Science), 2012, 40(3): 331-337. DOI:10.3969/j.issn.0253-374x.2012.03.002. (in Chinese)
[5] 柴生波, 肖汝诚, 王秀兰, 等. 多塔悬索桥主缆与鞍座抗滑解析计算方法[J]. 中国公路学报, 2016, 29(4): 59-66. DOI:10.19721/j.cnki.1001-7372.2016.04.008.
Chai S B, Xiao R C, Wang X L, et al. Analytic method for calculating anti-slip safety factor between main cable and saddle in multi-tower suspension bridge[J]. China Journal of Highway and Transport, 2016, 29(4): 59-66. DOI:10.19721/j.cnki.1001-7372.2016.04.008. (in Chinese)
[6] Zhang Q H, Cheng Z Y, Cui C, et al. Analytical model for frictional resistance between cable and saddle of suspension bridges equipped with vertical friction plates[J].Journal of Bridge Engineering, 2017, 22(1): 04016103. DOI:10.1061/(asce)be.1943-5592.0000986
[7] 王路. 悬索桥主缆与索鞍间滑移机理理论及试验研究[D]. 成都: 西南交通大学, 2018.
  Wang L. Theoretical and experimental studies on the slip mechanism between main cable and saddle in suspension bridge[D]. Chengdu: Southwest Jiaotong University, 2018.(in Chinese)
[8] 中华人民共和国交通运输部. JTG/T D65-05—2015公路悬索桥设计规范[S]. 北京: 人民交通出版社, 2015.
[9] 朱本瑾. 多塔悬索桥的结构体系研究[D]. 上海: 同济大学, 2007.
  Zhu B J. Structural system research of multi-tower suspension bridge[D]. Shanghai: Tongji University, 2007.(in Chinese)
[10] Ni Y Q, Wang J Y, Lo L C. Influence of stabilizing cables on seismic response of a multispan cable-stayed bridge[J]. Computer-Aided Civil and Infrastructure Engineering, 2005, 20(2): 142-153. DOI:10.1111/j.1467-8667.2005.00383.x.
[11] Clemente P,Nicolosi G, Raithel A. Preliminary design of very long-span suspension bridges[J]. Engineering Structures, 2000, 22(12): 1699-1706. DOI:10.1016/s0141-0296(99)00112-1.
[12] 孟凡超. 公路桥涵设计手册:悬索桥[M]. 北京: 人民交通出版社, 2011: 341-396.
[13] 李万恒, 王元丰, 李鹏飞, 等. 三塔悬索桥桥塔适宜刚度体系研究[J]. 土木工程学报, 2017, 50(1): 75-81. DOI:10.15951/j.tmgcxb.2017.01.010.
Li W H, Wang Y F, Li P F, et al. Rational distribution principle for the pylon stiffness of three-pylon suspension bridges[J]. China Civil Engineering Journal, 2017, 50(1): 75-81. DOI:10.15951/j.tmgcxb.2017.01.010. (in Chinese)
[14] 王路, 沈锐利, 白伦华, 等. 悬索桥主缆与索鞍间滑移行为及力学特征试验[J]. 中国公路学报, 2018, 31(9): 75-83, 103.
  Wang L, Shen R L, Bai L H, et al. Test for slip behavior and mechanical characteristics between main cable and saddle in suspension bridges[J]. China Journal of Highway and Transport, 2018, 31(9): 75-83, 103.(in Chinese)
[15] 唐贺强. 减小三塔悬索桥中塔顶主缆不平衡力的设计思路[J]. 桥梁建设, 2015, 45(5): 83-87.
  Tang H Q. Design considerations for alleviating unbalanced force of main cable atop intermediate tower of three-tower suspension bridge[J]. Bridge Construction, 2015, 45(5): 83-87.(in Chinese)
[16] 聂建国, 周萌, 姬同庚, 等. 基于多尺度模型的自锚式钢箱梁悬索桥主缆锚固区受力性能研究[J]. 土木工程学报, 2014, 47(6): 57-69. DOI:10.15951/j.tmgcxb.2014.06.002.
Nie J G, Zhou M, Ji T G, et al. Study on behaviors of cable anchorage zone of self-anchored suspension bridges with steel box girders based on multi-scale modeling method[J]. China Civil Engineering Journal, 2014, 47(6): 57-69. DOI:10.15951/j.tmgcxb.2014.06.002. (in Chinese)

备注/Memo

备注/Memo:
收稿日期: 2018-11-20.
作者简介: 沈锐利(1963—),男,博士,教授,博士生导师,rlshen@163.com.
基金项目: 国家自然科学基金资助项目(51178396)、浙江省交通运输厅科技计划资助项目(2011H03).
引用本文: 沈锐利,侯康,王路.三塔悬索桥结构竖向刚度及主缆抗滑需求[J].东南大学学报(自然科学版),2019,49(3):474-480. DOI:10.3969/j.issn.1001-0505.2019.03.010.
更新日期/Last Update: 2019-05-20