[1]方智远,李正良,汪之松.下击暴流作用下不同深宽比的高层建筑风荷载[J].东南大学学报(自然科学版),2019,49(3):488-494.[doi:10.3969/j.issn.1001-0505.2019.03.012]
 Fang Zhiyuan,Li Zhengliang,Wang Zhisong.Wind loads of high-rise buildings with various aspect ratios in downburst wind[J].Journal of Southeast University (Natural Science Edition),2019,49(3):488-494.[doi:10.3969/j.issn.1001-0505.2019.03.012]
点击复制

下击暴流作用下不同深宽比的高层建筑风荷载()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
49
期数:
2019年第3期
页码:
488-494
栏目:
土木工程
出版日期:
2019-05-20

文章信息/Info

Title:
Wind loads of high-rise buildings with various aspect ratios in downburst wind
作者:
方智远1李正良12汪之松12
1重庆大学土木工程学院, 重庆 400045; 2重庆大学山地城镇建设与新技术教育部重点实验室, 重庆 400045
Author(s):
Fang Zhiyuan1 Li Zhengliang12 Wang Zhisong12
1School of Civil Engineering, Chongqing University, Chongqing 400045, China
2Key Laboratory of New Technology for Construction of Cities in Mountain Area of Ministry of Education, Chongqing University, Chongqing 400045, China
关键词:
下击暴流 冲击射流 高层建筑 风荷载
Keywords:
downburst wind impinging jet high-rise building wind loads
分类号:
TU312.1
DOI:
10.3969/j.issn.1001-0505.2019.03.012
摘要:
为研究下击暴流作用下高层建筑的风荷载特性,采用冲击射流装置对5种不同深宽比的高层建筑模型进行测压试验,分析了深宽比和径向距离对模型局部和整体风荷载的影响.结果表明:层阻力系数沿高度方向呈下大上小的分布特征,最大层阻力系数出现在0.25H(H为建筑高度)左右,层脉动升力系数沿高度变化较为平缓;随深宽比的增大,层平均阻力系数略有减小,层脉动升力系数显著增大,模型整体的平均阻力系数和顺风向弯矩系数略有减小,整体的脉动升力系数及横风向弯矩系数明显增大;随径向距离的增大,层平均阻力系数迅速减小,层脉动阻力系数和脉动升力系数先增大后减小,模型整体的平均阻力系数和弯矩系数迅速减小,整体的脉动阻力及升力系数先增大后减小.
Abstract:
To study the wind load characteristics of high-rise buildings in downburst wind, an impinging jet device was used to carry out the pressure tests on 5 high-rise building models with different depth-to-width ratios. The influence of the aspect ratio and the radial distance on the local and overall wind loads was analyzed. The results show that the distribution characteristics of the layer drag coefficients along the height direction are larger in the lower part and smaller in the upper part of the building models. The maximum of the layer drag coefficients occurs at the height of about 0.25H(H is the height of the building), and the fluctuating lift coefficients of the layers change smoothly along the height. With the increase of the depth-to-width ratio, the average of the layer drag coefficients decreases slightly while the fluctuating layer lift coefficient increases significantly; as for the whole model, the mean drag coefficient and the along-wind bending moment coefficient decrease slightly, while the fluctuating lift coefficient and the cross-wind bending moment coefficient increase obviously. With the increase of the radial distance, the mean layer drag coefficient decreases rapidly; the fluctuating layer drag coefficient and the lift coefficient increase first and then decrease; as for the whole model, the mean drag coefficient and the bending moment coefficient decrease rapidly, while the fluctuating drag and the lift coefficient increase first and then decrease.

参考文献/References:

[1] Letchford C W, Mans C, Chay M T. Thunderstorms: Their importance in wind engineering(a case for the next generation wind tunnel)[J].Journal of Wind Engineering and Industrial Aerodynamics, 2002, 90(12/13/14/15): 1415-1433. DOI:10.1016/s0167-6105(02)00262-3.
[2] Chen L, Letchford C W. Parametric study on the along-wind response of the CAARC building to downbursts in the time domain[J].Journal of Wind Engineering and Industrial Aerodynamics, 2004, 92(9): 703-724. DOI:10.1016/j.jweia.2004.03.001.
[3] Sengupta A, Haan F L, Sarkar P P, et al. Transient loads on buildings in microburst and tornado winds[J].Journal of Wind Engineering and Industrial Aerodynamics, 2008, 96(10/11): 2173-2187. DOI:10.1016/j.jweia.2008.02.050.
[4] Kim J, Hangan H, Eric Ho T C. Downburst versus boundary layer induced wind loads for tall buildings[J].Wind and Structures, 2007, 10(5): 481-494. DOI:10.12989/was.2007.10.5.481.
[5] Jesson M, Sterling M, Letchford C, et al. Aerodynamic forces on generic buildings subject to transient, downburst-type winds[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2015, 137: 58-68. DOI:10.1016/j.jweia.2014.12.003.
[6] Zhang Y, Sarkar P, Hu H. An experimental study on wind loads acting on a high-rise building model induced by microburst-like winds[J].Journal of Fluids and Structures, 2014, 50: 547-564. DOI:10.1016/j.jfluidstructs.2014.07.010.
[7] 邹鑫, 汪之松, 李正良. 稳态冲击风作用下高层建筑风荷载特性试验研究[J]. 湖南大学学报(自然科学版), 2016, 43(1): 29-36. DOI:10.3969/j.issn.1674-2974.2016.01.004.
Zou X, Wang Z S, Li Z L. Experimental study on the wind load characteristics of high-rise building in stationary downbursts[J]. Journal of Hunan University(Natural Sciences), 2016, 43(1): 29-36. DOI:10.3969/j.issn.1674-2974.2016.01.004. (in Chinese)
[8] 邹鑫. 雷暴冲击风风场及其高层建筑风荷载特性研究[D]. 重庆: 重庆大学, 2016.
  Zou X. Research on thunderstorm downburst wind field and its wind loads to high-rise buildings[D]. Chongqing: Chongqing University, 2016.(in Chinese)
[9] 汪之松, 左其刚, 唐伟峰, 等. 稳态冲击射流作用下平地及坡地高层建筑的风荷载特性[J]. 建筑结构学报, 2017, 38(3): 103-110. DOI:10.14006/j.jzjgxb.2017.03.011.
Wang Z S, Zuo Q G, Tang W F, et al. Wind load characteristics for high-rise building on flat terrain and slope under steady-state impinging jet[J]. Journal of Building Structures, 2017, 38(3): 103-110. DOI:10.14006/j.jzjgxb.2017.03.011. (in Chinese)
[10] 汪之松, 方智远, 刘亚南. 雷暴冲击风作用下坡地坡度对高层建筑风压的影响[J]. 西南交通大学学报, 2017, 52(5): 893-901. DOI:10.3969/j.issn.0258-2724.2017.05.008.
Wang Z S, Fang Z Y, Liu Y N. Effect of slope gradient on wind pressure of high-rise buildings during thunderstorm[J]. Journal of Southwest Jiaotong University, 2017, 52(5): 893-901. DOI:10.3969/j.issn.0258-2724.2017.05.008. (in Chinese)
[11] 中华人民共和国住房和城乡建设部. GB 50009—2012 建筑结构荷载规范[S]. 北京:中国建筑工业出版社, 2012.
[12] Hjelmfelt M R. Structure and life cycle of microburst outflows observed in Colorado[J].Journal of Applied Meteorology, 1988, 27(8): 900-927. DOI:10.1175/1520-0450(1988)0270900:salcom>2.0.co;2.
[13] Letchford C W, Illidge G. Turbulence and topographic effects in simulated thunderstorm downdrafts by wind tunnel jet[C]//Proceedings of the Tenth International Conference on Wind Engineering. Copenhagen, Denmark, 1999:1907-1912.
[14] Wood G S, Kwok K C S, Motteram N A, et al. Physical and numerical modelling of thunderstorm downbursts[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2001, 89(6): 535-552. DOI:10.1016/s0167-6105(00)00090-8.
[15] Nakamura Y, Hirata K. Critical geometry of oscillating bluff bodies[J].Journal of Fluid Mechanics, 1989, 208: 375. DOI:10.1017/s0022112089002879.

备注/Memo

备注/Memo:
收稿日期: 2018-10-06.
作者简介: 方智远(1991—),男,博士生;李正良(联系人),男,博士,教授,博士生导师,lizhengl@hotmail.com.
基金项目: 国家自然科学基金资助项目(51208537).
引用本文: 方智远,李正良,汪之松.下击暴流作用下不同深宽比高层建筑风荷载[J].东南大学学报(自然科学版),2019,49(3):488-494. DOI:10.3969/j.issn.1001-0505.2019.03.012.
更新日期/Last Update: 2019-05-20