[1]刘瑾,白玉霞,宋泽卓,等.OPS型固化剂改良砂土工程特性试验研究[J].东南大学学报(自然科学版),2019,49(3):495-501.[doi:10.3969/j.issn.1001-0505.2019.03.013]
 Liu Jin,Bai Yuxia,Song Zezhuo,et al.Experimental study on engineering properties of sand reinforced by OPS soil stabilizer[J].Journal of Southeast University (Natural Science Edition),2019,49(3):495-501.[doi:10.3969/j.issn.1001-0505.2019.03.013]
点击复制

OPS型固化剂改良砂土工程特性试验研究()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
49
期数:
2019年第3期
页码:
495-501
栏目:
土木工程
出版日期:
2019-05-20

文章信息/Info

Title:
Experimental study on engineering properties of sand reinforced by OPS soil stabilizer
作者:
刘瑾1白玉霞1宋泽卓1陈志昊1孙少锐1黄英豪2王琼亚1魏继红1
1河海大学地球科学与工程学院, 南京 211100; 2南京水利科学研究院岩土工程研究所, 南京 210029
Author(s):
Liu Jin1 Bai Yuxia1 Song Zezhuo1 Chen Zhihao1Sun Shaorui1 Huang Yinghao2 Wang Qiongya1 Wei Jihong1
1School of Earth Sciences and Engineering, Hohai University, Nanjing 211100, China
2Nanjing Hydraulic Research Institute, Institute of Geotechnical Engineering, Nanjing 210029, China
关键词:
有机高分子固化剂 砂土 渗透特性 强度特性 改良机理
Keywords:
organic polymer stabilizer sand permeability characteristics strength properties reinforcement mechanism
分类号:
TU443
DOI:
10.3969/j.issn.1001-0505.2019.03.013
摘要:
为了研究有机高分子固化剂(OPS型固化剂)改良砂土效果,开展了渗透、抗压、快剪和抗拉试验,分析了OPS含量和砂土干密度对改良效果的影响,并结合微观扫描电镜对OPS改良砂土机理进行了深入研究.试验结果表明,随OPS含量和砂土干密度的增大,改良砂土的渗透系数逐渐减小,相对渗透阻力系数逐渐增大,抗压强度、残余强度和黏聚力均增强.内摩擦角随OPS含量增加呈先增加再减小的变化趋势,当OPS掺量为2%~3%时达到峰值.抗拉强度与OPS含量呈线性关系,随干密度增加,抗拉强度先增加再减小,当干密度为1.5 g/cm3时,抗拉强度达到最大值70.38 kPa.OPS溶液在砂土中形成的高分子膜紧密地缠绕、包裹砂粒,填充砂土空隙,形成稳定的网络状结构,进而增强土颗粒间的相互作用,改善砂土的工程特性.
Abstract:
To study the effects of organic polymer stabilizer(OPS)on sand reinforcement, permeability, unconfined compression, quick shear and tensile tests were carried out. The effects of the OPS content and the dry density on reinforcement effectiveness were studied, and the mechanism of OPS reinforced sand was analyzed by using the micro-scanning electron microscope. The results show that with the increase of the OPS content and the dry density, the permeability coefficient of reinforced sand decreases while the relative permeability resistance coefficient, the compression strength, the residual strength, and the cohesion of reinforced sand increase. The internal friction angle increases first and then decreases with the increase of the OPS content. When the OPS content is 2% to 3%, the internal friction angle reaches maximum. The relationship between the tensile strength and the OPS content is linear. With the increase of the dry density, the tensile strength increases first and then decreases. The tensile strength reaches the maximum of 70.38 kPa with the dry density of 1.5 g/cm3. The polymer membrane formed by OPS solution enwraps sand particles, and fills void to form a stable net structure among sand particles. The interaction among sad particles is enhanced, and the engineering properties of sand are improved.

参考文献/References:

[1] Aldeeky H, Al Hattamleh O, Abu Alfoul B. Effect of sand placement method on the interface friction of sand and geotextile[J]. International Journal of Civil Engineering, 2016, 14(2): 133-138. DOI:10.1007/s40999-016-0019-0.
[2] Hejazi S M, Sheikhzadeh M, Abtahi S M, et al. A simple review of soil reinforcement by using natural and synthetic fibers[J]. Construction and Building Materials, 2012, 30: 100-116. DOI:10.1016/j.conbuildmat.2011.11.045.
[3] 李广信,陈轮,郑继勤,等. 纤维加筋粘性土的试验研究[J]. 水利学报,1995,26(6): 31-36. DOI:10.13243/j.cnki.slxb.1995.06.005
Li G X, Chen L, Zheng J Q, et al. Experimental study on fiber-reinforced cohesive soil[J]. Journal of Hydraulic Engineering, 1995, 26(6): 31-36. DOI:10.13243/j.cnki.slxb.1995.06.005. (in Chinese)
[4] Tang C S, Wang D Y, Cui Y J, et al. Tensile strength of fiber-reinforced soil[J].Journal of Materials in Civil Engineering, 2016, 28(7): 04016031. DOI:10.1061/(asce)mt.1943-5533.0001546.
[5] 王珊珊,卢成原,孟凡丽. 水泥土抗剪强度试验研究[J]. 浙江工业大学学报,2008,36(4): 456-459. DOI:10.3969/j.issn.1006-4303.2008.04.023.
Wang S S, Lu C Y, Meng F L. An experimental study of shear strength of cement soil[J]. Journal of Zhejiang University of Technology, 2008, 36(4): 456-459. DOI:10.3969/j.issn.1006-4303.2008.04.023. (in Chinese)
[6] 谭敏,朱志铎. 固化粉土抗拉特性试验研究[J]. 地下空间与工程学报,2013,9(z2): 1811-1816.
  Tan M, Zhu Z D. Research on tensile characteristics of stabilized silt[J]. Chinese Journal of Underground Space and Engineering, 2013, 9(z2): 1811-1816.(in Chinese)
[7] 樊恒辉,高建恩,吴普特. 土壤固化剂研究现状与展望[J]. 西北农林科技大学学报(自然科学版),2006,34(2): 141-146, 152. DOI:10.3321/j.issn:1671-9387.2006.02.029.
Fan H H, Gao J E, Wu P T. Prospect of researches on soil stabilizer[J]. Journal of Northwest Sci-Tech University of Agriculture and Forestry(Natural Science Edition), 2006, 34(2): 141-146, 152. DOI:10.3321/j.issn:1671-9387.2006.02.029. (in Chinese)
[8] Rezaeimalek S, Huang J, Bin-Shafique S. Evaluation of curing method and mix design of a moisture activated polymer for sand stabilization[J]. Construction and Building Materials, 2017, 146: 210-220. DOI:10.1016/j.conbuildmat.2017.04.093.
[9] Ate A. The effect of polymer-cement stabilization on the unconfined compressive strength of liquefiable soils[J]. International Journal of Polymer Science, 2013, 2013: 1-8. DOI:10.1155/2013/356214.
[10] Liu J, Chen Z H,Kanungo D P, et al. Topsoil reinforcement of sandy slope for preventing erosion using water-based polyurethane soil stabilizer[J]. Engineering Geology, 2019, 252: 125-135. DOI:10.1016/j.enggeo.2019.03.003.
[11] Inbar A, Ben-Hur M, Sternberg M, et al. Using polyacrylamide to mitigate post-fire soil erosion[J]. Geoderma, 2015, 239/240: 107-114. DOI:10.1016/j.geoderma.2014.09.026.
[12] Liu J, Chen Z H, Song Z Z, et al. Tensile behavior of polyurethane organic polymer and polypropylene fiber-reinforced sand[J]. Polymers, 2018, 10(5): 499. DOI:10.3390/polym10050499.
[13] 彭劼,何想,刘志明,等. 低温条件下微生物诱导碳酸钙沉积加固土体的试验研究[J]. 岩土工程学报,2016,38(10): 1769-1774. DOI:10.11779/CJGE201610004.
Peng J, He X, Liu Z M, et al. Experimental research on influence of low temperature on MICP-treated soil[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(10): 1769-1774. DOI:10.11779/CJGE201610004. (in Chinese)
[14] Liu J, Qi X H, Zhang D, et al. Study on the permeability characteristics of polyurethane soil stabilizer reinforced sand[J].Advances in Materials Science and Engineering, 2017, 2017: 1-14. DOI:10.1155/2017/5240186.
[15] Park S S. Unconfined compressive strength and ductility of fiber-reinforced cemented sand[J]. Construction and Building Materials, 2011, 25(2): 1134-1138. DOI:10.1016/j.conbuildmat.2010.07.017.
[16] 张丽萍,张兴昌,孙强. EN-1固化剂加固黄土的工程特性及其影响因素[J]. 中国水土保持科学,2009,7(4): 60-65. DOI:10.3969/j.issn.1672-3007.2009.04.011.
Zhang L P, Zhang X C, Sun Q. Engineering properties and influencing factors of solidified loess by EN-1 solidifying agent[J]. Science of Soil and Water Conservation, 2009, 7(4): 60-65. DOI:10.3969/j.issn.1672-3007.2009.04.011. (in Chinese)
[17] 蔡国庆,车睿杰,孔小昂,等. 非饱和砂土抗拉强度的试验研究[J]. 水利学报,2017,48(5): 623-630. DOI: 10.13243/j.cnki.slxb.20160878.
Cai G Q, Che R J, Kong X A, et al. Experimental investigation on tensile strength of unsaturated fine sands[J]. Journal of Hydraulic Engineering, 2017, 48(5): 623-630. DOI:10.13243/j.cnki.slxb.20160878. (in Chinese)
[18] Liu J, Bai Y X, Li D, et al. An experimental study on the shear behaviors of polymer-sand composite materials after immersion[J].Polymers, 2018, 10(8): 924. DOI:10.3390/polym10080924.

相似文献/References:

[1]黎冰,等.砂土中吸力式沉箱基础的最大承载力计算方法[J].东南大学学报(自然科学版),2012,42(6):1201.[doi:10.3969/j.issn.1001-0505.2012.06.032]
 Li Bing,Gao Yufeng,et al.Calculation method for maximum bearing capacity of suction caisson foundation in sand[J].Journal of Southeast University (Natural Science Edition),2012,42(3):1201.[doi:10.3969/j.issn.1001-0505.2012.06.032]

备注/Memo

备注/Memo:
收稿日期: 2018-09-29.
作者简介: 刘瑾(1983—), 女, 博士, 教授, 博士生导师, jinliu920@163.com.
基金项目: 国家自然科学基金面上资助项目(41472241)、江苏省水利科技项目重大技术攻关资助项目(2017010).
引用本文: 刘瑾,白玉霞,宋泽卓,等.OPS型固化剂改良砂土工程特性试验研究[J].东南大学学报(自然科学版),2019,49(3):495-501. DOI:10.3969/j.issn.1001-0505.2019.03.013.
更新日期/Last Update: 2019-05-20