[1]付忆华,陈曦,钟文琪,等.基于CFD和RSM的船舶SCR脱硝装置结构优化[J].东南大学学报(自然科学版),2019,49(3):549-557.[doi:10.3969/j.issn.1001-0505.2019.03.021]
 Fu Yihua,Chen Xi,Zhong Wenqi,et al.Structure optimization of vessel SCR based on CFD and RSM[J].Journal of Southeast University (Natural Science Edition),2019,49(3):549-557.[doi:10.3969/j.issn.1001-0505.2019.03.021]
点击复制

基于CFD和RSM的船舶SCR脱硝装置结构优化()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
49
期数:
2019年第3期
页码:
549-557
栏目:
能源与动力工程
出版日期:
2019-05-20

文章信息/Info

Title:
Structure optimization of vessel SCR based on CFD and RSM
作者:
付忆华陈曦钟文琪展锦程
东南大学能源热转换及其过程测控教育部重点实验室, 南京 210096; 东南大学能源与环境学院, 南京 210096
Author(s):
Fu Yihua Chen Xi Zhong Wenqi Zhan Jincheng
Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, Southeast University, Nanjing 210096, China
School of Energy and Environment, Southeast University, Nanjing 210096, China
关键词:
SCR 数值模拟 优化设计 响应面法
Keywords:
selective catalytic reduction numerical simulation optimization design response surface method
分类号:
TK09
DOI:
10.3969/j.issn.1001-0505.2019.03.021
摘要:
以某船舶选择性催化还原(SCR)系统为研究对象,将计算流体力学(CFD)与响应面法(RSM)相结合,获得了催化剂尺寸、混合室位置等结构参数对于流场、脱硝效率和氨逃逸率的影响规律. 在此基础上以CFD数据为样本拟合响应函数,并通过求解响应函数极值的方法实现了SCR装置结构的小型化.数值模拟结果表明,混合室的设置提高了尿素与尾气混合均匀性.同时,随着SCR反应器尺寸缩小,脱硝效率和氨逃逸量分别下降和增加.通过RSM优化后的SCR反应器可缩小15.9%~45.2%,混合室的最佳位置为SCR前1.70~2.39 m处,优化后系统脱硝效率超过90%,氨逃逸量小于5×10-6.
Abstract:
It is crucial to optimize the vessel selective catalytic reduction(SCR)structure to meet compact ship space. In the current study, a marine SCR system was studied based on computational fluid dynamics(CFD)and response surface method(RSM). The effects of the catalyst size and the distance between mixing chamber and nozzle on de-NOxx efficiency, and the ammonia slip was studied in detail. CFD data were used as samples for the response function fitting, and the structure of SCR was miniaturized by determining the extreme value of the response function. Simulation results indicate that the mixing chamber can enhance the mixture of urea and exhaust gas. The denitrification efficiency and the ammonia slip increase and decrease with the decrease of SCR catalyst size. The size of the catalyst after RSM optimization can be reduced by 15.9% to 45.2%, the most suitable mixing chamber position is 1.70 to 2.39 m from the nozzle. Under this circumstance, the de-NOx efficiency is over 90%, and the ammonia slip mass is less than 5×10-6.

参考文献/References:

[1] Eyring V. Emissions from international shipping: 1. the last 50 years[J]. Journal of Geophysical Research, 2005, 110(D17): D17305. DOI:10.1029/2004jd005619.
[2]North Sea Foundation, Transport & Environment, European Environmental Bureau, et al. Air pollution from ships[EB/OL].(2018-08-12)[2018-09]. https://www.transportenvironment.org/publications/air-pollution-ships-0.
[3]汪宗御, 张继锋, 纪玉龙. 船舶尾气污染物排放控制研究进展[J]. 化工进展, 2017, 36(6): 2289-2297. DOI:10.16085/j.issn.1000-6613.2017.06.046.
Wang Z Y, Zhang J F, Ji Y L. Research progress of emission control on ship exhaust pollutants[J]. Chemical Industry and Engineering Progress, 2017, 36(6): 2289-2297. DOI:10.16085/j.issn.1000-6613.2017.06.046. (in Chinese)
[4]欧顺华, 闵恩华, 章烈琪, 等. 某船用柴油机SCR尿素喷射系统结构参数仿真优化[J]. 船舶工程, 2017, 39(1): 10-14. DOI:10.13788/j.cnki.cbgc.2017.01.010.
Ou S H, Min E H, Zhang L Q, et al. Simulation optimization of urea injection structure parameters for SCR system of a marine diesel engine[J]. Ship Engineering, 2017, 39(1): 10-14. DOI:10.13788/j.cnki.cbgc.2017.01.010. (in Chinese)
[5]于丰瑞. 船舶柴油机SCR系统数值模拟与实验研究[D]. 大连: 大连海事大学, 2016.
  Yu F R. Experimental and numerical analysis of marine diesel engine SCR system[D]. Dalian: Dalian Maritime University, 2016.(in Chinese)
[6]Yun B K,Kim M Y. Modeling the selective catalytic reduction of NOxx by ammonia over a Vanadia-based catalyst from heavy duty diesel exhaust gases[J]. Applied Thermal Engineering, 2013, 50(1): 152-158. DOI:10.1016/j.applthermaleng.2012.05.039.
[7]赵彦光. 柴油机SCR技术尿素喷雾热分解及氨存储特性的试验研究[D]. 北京: 清华大学, 2012.
  Zhao Y G. Experimental study of urea solution spray and decomposition and ammonia storage in selective catalytic reduction system for diesel engines[D]. Beijing: Tsinghua Univesity, 2012.(in Chinese)
[8]胡付祥, 杨国华, 向红, 等. 紧凑型SCR催化剂在船舶柴油机上的脱硝性能[J]. 环境工程学报, 2016, 10(6): 3130-3134. DOI:10.12030/j.cjee.201509098.
Hu F X, Yang G H, Xiang H, et al. De-NOxx performance of a compact SCR catalyst on marine diesel engine[J]. Chinese Journal of Environmental Engineering, 2016, 10(6): 3130-3134. DOI:10.12030/j.cjee.201509098. (in Chinese)
[9]Scott S C S, Storey J M E, Lewis S A, et al. Low temperature urea decomposition and SCR Performance[J]. Sae Technical Paper, 2005:2005-01-1858. DOI: 10.4271/2005-01-1858.
[10]王铮, 刘道银, 刘猛, 等. 船舶SCR脱硝尿素喷射分解及氨气分布均匀性的优化[J]. 化工进展, 2017, 36(2): 742-749. DOI:10.16085/j.issn.1000-6613.2017.02.047.
Wang Z, Liu D Y, Liu M, et al. Optimization of uniformity of NH3distribution and thermolysis of urea in the SCR Marine process[J]. Chemical Industry and Engineering Progress, 2017, 36(2): 742-749. DOI:10.16085/j.issn.1000-6613.2017.02.047. (in Chinese)
[11]Cho Y S, Lee S W, Choi W C, et al. Urea-SCR system optimization with various combinations of mixer types and decomposition pipe lengths[J].International Journal of Automotive Technology, 2014, 15(5): 723-731. DOI:10.1007/s12239-014-0075-x.
[12]Choi C, Sung Y, Choi G M, et al. Numerical analysis of NOxx reduction for compact design in marine urea-SCR system[J]. International Journal of Naval Architecture and Ocean Engineering, 2015, 7(6): 1020-1034. DOI:10.1515/ijnaoe-2015-0071.
[13]Um H S, Kim D, Kim K H. Numerical study on the design of urea decomposition chamber in LP SCR system[J]. International Journal of Naval Architecture and Ocean Engineering, 2019, 11(1): 307-313. DOI:10.1016/j.ijnaoe.2018.06.005.
[14]李莉, 张赛, 何强, 等. 响应面法在试验设计与优化中的应用[J]. 实验室研究与探索, 2015, 34(8): 41-45. DOI:10.3969/j.issn.1006-7167.2015.08.011.
Li L, Zhang S, He Q, et al. Application of response surface methodology in experiment design and optimization[J]. Research and Exploration in Laboratory, 2015, 34(8): 41-45. DOI:10.3969/j.issn.1006-7167.2015.08.011. (in Chinese)
[15]陈海江.MAN6S50MC-C型柴油机SCR催化反应器结构尺寸设计与性能优化[D].大连:大连海事大学,2013.
  Chen H J. Structural dimensions design and performance optimization of MAN 6S50MC-C diesel engine SCR catalytic reactor[D].Dalian:Dalian Maritime University,2013.(in Chinese)
[16]Yim S D, Kim S J, Baik J H, et al. Decomposition of urea into NH3 for the SCR process[J]. Industrial & Engineering Chemistry Research, 2004, 43(16): 4856-4863. DOI:10.1021/ie034052j.
[17]Koebel M, Strutz E O. Thermal and hydrolytic decomposition of urea for automotive selective catalytic reduction systems: Thermochemical and practical aspects[J]. Industrial & Engineering Chemistry Research, 2003, 42(10): 2093-2100. DOI:10.1021/ie020950o.
[18]Magnussen B. On the structure of turbulence and a generalized eddy dissipation concept for chemical reaction in turbulent flow[C]//19th Aerospace Sciences Metting. St. Louis, MO, USA, 1981. DOI:10.2514/6.1981-42.
[19]Wurzenberger J C, Wanker R, Wurzenberger J C, et al. Multi-scale SCR modeling, 1D kinetic analysis and 3D system simulation[J]. SAE Technical Paper, 2005:2005-01-0948. DOI:10.4271/2005-01-0948.
[20]Kim J Y,Ryu S H, Ha J S. Numerical prediction on the characteristics of spray-induced mixing and thermal decomposition of urea solution in SCR system[C]//ASME 2004 Internal Combustion Engine Division Fall Technical Conference. Long Beach, CA, USA, 2004: 165-170. DOI:10.1115/ICEF2004-0889.
[21]Lehtoranta K, Vesala H, Koponen P,et al. Selective catalytic reduction operation with heavy fuel oil: NOxx, NH3, and particle emissions.[J]. Environmental Science & Technology, 2015, 49(7):4735-41. DOI: 10.1021/es506185x.
[22]Box G E P, Wilson K B. On the experimental attainment of optimum conditions[J]. Journal of the Royal Statistical Society: Series B(Methodological), 1951, 13(1): 1-38. DOI:10.1111/j.2517-6161.1951.tb00067.x.
[23]陶红歌, 陈焕新, 谢军龙, 等. 基于面积加权平均速度和质量加权平均速度的流体流动均匀性指标探讨[J]. 化工学报, 2010, 61(S2): 116-120.
  Tao H G, Chen H X,Xie J L, et al. Flow uniformity index based on area-weighted and mass-weighted average velocity[J]. CIESC Journal, 2010, 61(S2): 116-120.(in Chinese)
[24]徐月明. 船用柴油机SCR催化剂选型及性能评价研究[D]. 武汉: 武汉理工大学, 2012.
  Xu Y M. Study on design and performance evaluation of SCR catalyst used for marine diesel engine[D]. Wuhan: Wuhan University of Technology, 2012.(in Chinese)
[25]Zarei M, Niaei A, Salari D, et al. Application of response surface methodology for optimization of peroxi-coagulation of textile dye solution using carbon nanotube-PTFE cathode[J]. Journal of Hazardous Materials, 2010, 173(1/2/3): 544-551. DOI:10.1016/j.jhazmat.2009.08.120.
[26]Panahi P N, Salari D, Niaei A, et al. NO reduction over nanostructure M-Cu/ZSM-5(M: Cr, Mn, Co and Fe)bimetallic catalysts and optimization of catalyst preparation by RSM[J]. Journal of Industrial and Engineering Chemistry, 2013, 19(6): 1793-1799. DOI:10.1016/j.jiec.2013.02.022.

相似文献/References:

[1]王秋颖,顾璠.DBD固体燃料液化多相介质作用机理分析[J].东南大学学报(自然科学版),2010,40(4):800.[doi:10.3969/j.issn.1001-0505.2010.04.026]
 Wang Qiuying,Gu Fan.Mechanism analysis of multiphase mediums interaction of solid fuels liquefaction by dielectric barrier discharge plasma[J].Journal of Southeast University (Natural Science Edition),2010,40(3):800.[doi:10.3969/j.issn.1001-0505.2010.04.026]
[2]耿凡,袁竹林,王宏生,等.流化床中烟丝颗粒的流动特性[J].东南大学学报(自然科学版),2009,39(5):1012.[doi:10.3969/j.issn.1001-0505.2009.05.029]
 Geng Fan,Yuan Zhulin,Wang Hongsheng,et al.Fluidization characteristics of tobacco particles in fluidized bed[J].Journal of Southeast University (Natural Science Edition),2009,39(3):1012.[doi:10.3969/j.issn.1001-0505.2009.05.029]
[3]王浩,李爱群,谢以顺,等.基于实测风谱的润扬悬索桥桥址区三维脉动风场模拟[J].东南大学学报(自然科学版),2009,39(6):1206.[doi:10.3969/j.issn.1001-0505.2009.06.023]
 Wang Hao,Li Aiqun,Xie Yishun,et al.Digital simulation of 3-dimensional turbulence wind field of Runyang Suspension Bridge based on measured wind spectra[J].Journal of Southeast University (Natural Science Edition),2009,39(3):1206.[doi:10.3969/j.issn.1001-0505.2009.06.023]
[4]艾亿谋,杜成斌,居发亮.基于电阻率的混凝土裂缝测量方法[J].东南大学学报(自然科学版),2008,38(2):289.[doi:10.3969/j.issn.1001-0505.2008.02.021]
 Ai Yimou,Du Chengbin,Ju Faliang.Concrete crack measurement by electrical resistivity[J].Journal of Southeast University (Natural Science Edition),2008,38(3):289.[doi:10.3969/j.issn.1001-0505.2008.02.021]
[5]杨迎春,陈永平,施明恒,等.恒壁温下梯形硅微通道热沉流动换热特性[J].东南大学学报(自然科学版),2008,38(4):647.[doi:10.3969/j.issn.1001-0505.2008.04.020]
 Yang Yingchun,Chen Yongping,Shi Mingheng,et al.Heat transfer in trapezoidal silicon microchannel heat sinks with constant wall temperature[J].Journal of Southeast University (Natural Science Edition),2008,38(3):647.[doi:10.3969/j.issn.1001-0505.2008.04.020]
[6]梁坤峰,彭正标,袁竹林.液-液循环流化床制冰过程的火用分析[J].东南大学学报(自然科学版),2006,36(5):774.[doi:10.3969/j.issn.1001-0505.2006.05.019]
 Liang Kunfeng,Peng Zhengbiao,Yuan Zhulin.Exergy analysis of ice-making process for liquid-liquid circulating fluidized bed[J].Journal of Southeast University (Natural Science Edition),2006,36(3):774.[doi:10.3969/j.issn.1001-0505.2006.05.019]
[7]潘华,邱洪兴.钢筋混凝土受弯构件正截面疲劳性能数值模拟[J].东南大学学报(自然科学版),2006,36(6):997.[doi:10.3969/j.issn.1001-0505.2006.06.025]
 Pan Hua,Qiu Hongxing.Numerical simulation of fatigue performance of reinforced concrete flexural components[J].Journal of Southeast University (Natural Science Edition),2006,36(3):997.[doi:10.3969/j.issn.1001-0505.2006.06.025]
[8]施明恒,王兴春,蔡辉.太阳能毛细驱动喷射式空调器性能模拟研究[J].东南大学学报(自然科学版),2005,35(1):69.[doi:10.3969/j.issn.1001-0505.2005.01.015]
 Shi Mingheng,Wang Xingchun,Cai Hui.Numerical simulation of the performance of a capillary thermal driven ejector refrigerator[J].Journal of Southeast University (Natural Science Edition),2005,35(3):69.[doi:10.3969/j.issn.1001-0505.2005.01.015]
[9]杨兰兰,屠彦,王保平.PDP放电特性二维流体数值模拟的加速方法[J].东南大学学报(自然科学版),2005,35(5):678.[doi:10.3969/j.issn.1001-0505.2005.05.005]
 Yang Lanlan,Tu Yan,Wang Baoping.Speeding up method in 2D fluid numerical simulation of PDP discharge characteristics[J].Journal of Southeast University (Natural Science Edition),2005,35(3):678.[doi:10.3969/j.issn.1001-0505.2005.05.005]
[10]高海鹰,张奇.污染物在受潮汐影响的地下水中输移的模拟[J].东南大学学报(自然科学版),2005,35(6):950.[doi:10.3969/j.issn.1001-0505.2005.06.026]
 Gao Haiying,Zhang Qi.Modeling of contaminant transport in groundwater with impact of tide[J].Journal of Southeast University (Natural Science Edition),2005,35(3):950.[doi:10.3969/j.issn.1001-0505.2005.06.026]

备注/Memo

备注/Memo:
收稿日期: 2018-11-07.
作者简介: 付忆华(1994—),女,硕士生;钟文琪(联系人),男,博士,教授,博士生导师,wqzhong@seu.edu.cn.
基金项目: 国家自然科学基金重大资助项目(51390492).
引用本文: 付忆华,陈曦,钟文琪,等.基于CFD和RSM的船舶SCR脱硝装置结构优化[J].东南大学学报(自然科学版),2019,49(3):549-557. DOI:10.3969/j.issn.1001-0505.2019.03.021.
更新日期/Last Update: 2019-05-20