[1]许成城,李舒宏.南京地区外保温墙体保温层经济厚度分析[J].东南大学学报(自然科学版),2019,49(3):558-564.[doi:10.3969/j.issn.1001-0505.2019.03.022]
 Xu Chengcheng,Li Shuhong.Analysis on optimum insulation thickness of external thermal insulation walls in Nanjing zone[J].Journal of Southeast University (Natural Science Edition),2019,49(3):558-564.[doi:10.3969/j.issn.1001-0505.2019.03.022]
点击复制

南京地区外保温墙体保温层经济厚度分析()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
49
期数:
2019年第3期
页码:
558-564
栏目:
建筑学
出版日期:
2019-05-20

文章信息/Info

Title:
Analysis on optimum insulation thickness of external thermal insulation walls in Nanjing zone
作者:
许成城李舒宏
东南大学能源与环境学院, 南京 210096
Author(s):
Xu Chengcheng Li Shuhong
School of Energy and Environment, Southeast University, Nanjing 210096, China
关键词:
热湿耦合传递 P1-P212经济学模型 保温墙体 经济厚度 投资回收期
Keywords:
coupled heat and moisture transfer P1-P212 economic model optimum insulation thickness payback period
分类号:
TU111.19
DOI:
10.3969/j.issn.1001-0505.2019.03.022
摘要:
针对当前保温材料经济厚度的研究中通常采用的稳态或非稳态传热计算方法存在不精确、未考虑湿传递、太阳辐射等问题,采用以温度和相对湿度为计算驱动势的一维墙体热湿耦合传递模型,以南京典型气象年的逐时气象参数(包括温度、相对湿度、太阳辐射强度)为室外边界条件,恒温恒湿工况为室内边界条件,对南京地区外保温墙体进行了热湿耦合传递模拟.结果表明,在南京地区的环境下,忽略湿传递的影响会对外保温墙体的全年传热量产生约2.74%~6.53%的偏差.通过对南京地区外保温墙体常见的3种保温材料进行热湿耦合传递模拟,并使用P1-P212经济学模型,对比分析了膨胀聚苯板(EPS)、聚氨酯泡沫(PU)、挤塑聚苯板(XPS)3种保温材料的外保温墙体的经济性,得出了3种材料的经济厚度分别为69.8、39.8 和49.7 mm,投资回收期聚氨酯泡沫最长,挤塑聚苯板次之,膨胀聚苯板最短.
Abstract:
At present, the calculation methods of steady-state or unsteady-state heat transfer for studying optimum thickness of thermal insulation layers were inaccurate without considering the effects of moisture transfer and solar radiation. A coupled heat and moisture transfer model for one-dimensional walls, with temperature and relative humidity as the driving forces, was used to simulate the heat and moisture transfer situation of the external thermal insulation walls in Nanjing. Hourly meteorological data including temperature, relative humidity and solar radiation intensity of a typical meteorological year in Nanjing was taken as outdoor boundary conditions, while the constant temperature and the humidity were taken as indoor boundary conditions. The results show that neglecting the effect of moisture transfer in Nanjing can result in a deviation of about 2.74%to 6.53% in the annual heat transfer calculation of external thermal insulation walls. The heat and moisture transfer simulation of three kinds of common insulation materials for external thermal insulation walls in Nanjing is carried out. The P1-P212 economic model is used to analyze and compare the economic efficiency of the external thermal insulation wall of three kinds of insulation materials, such as expanded polystyrene(EPS), polyurethane(PU)and extruded polystyrene(XPS). The optimum thicknesses of the three materials are 69.8, 39.8 and 49.7 mm. The payback period of PU is the longest, followed by XPS and EPS.

参考文献/References:

[1] Belmonte J F, Eguía P, Molina A E, et al. Thermal simulation and system optimization of a chilled ceiling coupled with a floor containing a phase change material(PCM)[J]. Sustainable Cities and Society, 2015, 14: 154-170. DOI:10.1016/j.scs.2014.09.004.
[2] Xu C C, Li S H, Zhang X S, et al. Thermal comfort and thermal adaptive behaviours in traditional dwellings: A case study in Nanjing, China[J]. Building and Environment, 2018, 142: 153-170. DOI:10.1016/j.buildenv.2018.06.006.
[3] Brady L, Abdellatif M. Assessment of energy consumption in existing buildings[J]. Energy and Buildings, 2017, 149: 142-150. DOI:10.1016/j.enbuild.2017.05.051.
[4] Sun H L, Lin B R, Lin Z R, et al. Research on a radiant heating terminal integrated with a thermoelectric unit and flat heat pipe[J]. Energy and Buildings, 2018, 172: 209-220. DOI:10.1016/j.enbuild.2018.04.054.
[5] Huo T F, Ren H, Zhang X L, et al. China’s energy consumption in the building sector: A statistical yearbook-energy balance sheet based splitting method[J]. Journal of Cleaner Production, 2018, 185: 665-679. DOI:10.1016/j.jclepro.2018.02.283.
[6] 刘方舟,聂金哲,李德英,等. 办公建筑外墙保温材料厚度优化研究[J]. 新型建筑材料,2018,45(5): 136-139.
  Liu F Z, Nie J Z, Li D Y, et al. Optimization research on thickness of insulation materials of exterior wall on office building[J]. New Building Materials, 2018, 45(5): 136-139.(in Chinese)
[7] Nejat P, Jomehzadeh F, Taheri M M, et al. A global review of energy consumption, CO2 emissions and policy in the residential sector(with an overview of the top ten CO2 emitting countries)[J]. Renewable and Sustainable Energy Reviews, 2015, 43: 843-862. DOI:10.1016/j.rser.2014.11.066.
[8] 黄仁达,李丽,吴会军,等. 夏热冬冷地区不同墙体结构的保温层厚度分析[J]. 硅酸盐通报,2018,37(6): 1829-1835. DOI:10.16552/j.cnki.issn1001-1625.2018.06.004.
Huang R D, Li L, Wu H J, et al. Analysis on thermal insulation thickness of different wall structures in hot summer and cold winter zone[J]. Bulletin of the Chinese Ceramic Society, 2018, 37(6): 1829-1835. DOI:10.16552/j.cnki.issn1001-1625.2018.06.004. (in Chinese)
[9] 朱桐,宋波,邓琴琴. 建筑高性能外墙外保温经济厚度分析[J]. 建筑科学,2015,31(6): 75-79, 172. DOI:10.13614/j.cnki.11-1962/tu.2015.06.013.
Zhu T, Song B, Deng Q Q. Analysis of economical thickness of exterior insulation for high-performance wall[J]. Building Science, 2015, 31(6): 75-79, 172. DOI:10.13614/j.cnki.11-1962/tu.2015.06.013. (in Chinese)
[10] Ozel M. Cost analysis for optimum thicknesses and environmental impacts of different insulation materials[J]. Energy and Buildings, 2012, 49: 552-559. DOI:10.1016/j.enbuild.2012.03.002.
[11] Cuce E, Cuce P M, Wood C J, et al. Optimizing insulation thickness and analysing environmental impacts of aerogel-based thermal superinsulation in buildings[J]. Energy and Buildings, 2014, 77: 28-39. DOI:10.1016/j.enbuild.2014.03.034.
[12] Daouas N, Hassen Z, Aissia H B. Analytical periodic solution for the study of thermal performance and optimum insulation thickness of building walls in Tunisia[J]. Applied Thermal Engineering, 2010, 30(4): 319-326. DOI:10.1016/j.applthermaleng.2009.09.009.
[13] 王飞,苏向辉. 建筑围护结构保温层厚度的经济性优化[J]. 建筑节能,2008,36(1): 40-43, 65. DOI:10.3969/j.issn.1673-7237.2008.01.012.
Wang F, Su X H. Economical optimum of insulation thickness of building envelope[J]. Construction Conserves Energy, 2008, 36(1): 40-43, 65. DOI:10.3969/j.issn.1673-7237.2008.01.012. (in Chinese)
[14] Barbosa R M, Mendes N. Combined simulation of central HVAC systems with a whole-building hygrothermal model[J]. Energy and Buildings, 2008, 40(3): 276-288. DOI:10.1016/j.enbuild.2007.02.022.
[15] Mendes N, Winkelmann F C, Lamberts R, et al. Moisture effects on conduction loads[J]. Energy and Buildings, 2003, 35(7): 631-644. DOI:10.1016/s0378-7788(02)00171-8.
[16] 邹凯凯,李舒宏. 夏热冬冷地区外保温墙体凝露特性及防结露措施分析[J]. 东南大学学报(自然科学版),2018,48(4): 654-661. DOI: 10.3969/j.issn.1001-0505.2018.04.010.
Zou K K, Li S H. Analysis of condensation characteristics and anti-condensation measures of external thermal insulation wall in hot summer and cold winter areas[J]. Journal of Southeast University(Natural Science Edition), 2018, 48(4): 654-661. DOI:10.3969/j.issn.1001-0505.2018.04.010. (in Chinese)
[17] van Belleghem M, Steeman M, Janssen H, et al. Validation of a coupled heat, vapour and liquid moisture transport model for porous materials implemented in CFD[J]. Building and Environment, 2014, 81: 340-353. DOI: 10.1016/j.buildenv.2014.06.024.
[18] Mendes N, Philippi P C, Lamberts R. A new mathematical method to solve highly coupled equations of heat and mass transfer in porous media[J]. International Journal of Heat and Mass Transfer, 2002, 45(3): 509-518. DOI:10.1016/s0017-9310(01)00172-7.
[19] 王宇昂,路昭,罗昔联,等. 遗址博物馆特殊环境温度场调控系统的设计及优化[J]. 西安交通大学学报,2016,50(7): 131-139. DOI:10.7652/xjtuxb201607020.
Wang Y A, Lu Z, Luo X L, et al. Design and optimization of temperature control system for special environment in site museums[J]. Journal of Xi’an Jiaotong University, 2016, 50(7): 131-139. DOI:10.7652/xjtuxb201607020. (in Chinese)
[20] Sharif-Askari H, Abu-Hijleh B. Review of museums’ indoor environment conditions studies and guidelines and their impact on the museums’ artifacts and energy consumption[J]. Building and Environment, 2018, 143: 186-195. DOI:10.1016/j.buildenv.2018.07.012.
[21] 中国人民共和国住房和城乡建设部. JGJ134—2010夏热冬冷地区居住建筑节能设计标准 [S]. 北京:中国建筑工业出版社,2010.
[22] Mahlia T M I, Taufiq B N, Ismail, et al. Correlation between thermal conductivity and the thickness of selected insulation materials for building wall[J]. Energy and Buildings, 2007, 39(2): 182-187. DOI:10.1016/j.enbuild.2006.06.002.
[23] 孙立新. 岩棉外墙外保温系统热湿耦合迁移及长期性能研究[D]. 西安: 西安建筑科技大学,2018.
  Sun L X. Research on the long-term performance of stone wool ETICS under coupled heat and mass transfer impact[D]. Xi’an: Xi’an University of Architecture and Technology, 2018.(in Chinese)

备注/Memo

备注/Memo:
收稿日期: 2018-09-08.
作者简介: 许成城(1994—),男,博士生;李舒宏(联系人),男,博士,教授,博士生导师,equart@seu.edu.cn.
基金项目: “十三五”国家重点研发计划资助项目(2017YFC0702501)、东南大学优秀博士学位论文培育基金资助项目(YBPY1910).
引用本文: 许成城,李舒宏.南京地区外保温墙体保温层经济厚度分析[J].东南大学学报(自然科学版),2019,49(3):558-564. DOI:10.3969/j.issn.1001-0505.2019.03.022.
更新日期/Last Update: 2019-05-20