[1]曾超,王文军,李燕,等.考虑性别因素的驾驶人疲劳状态HRV非线性特征[J].东南大学学报(自然科学版),2019,49(3):595-602.[doi:10.3969/j.issn.1001-0505.2019.03.027]
 Zeng Chao,Wang Wenjun,Li Yan,et al.Nonlinear heart rate variability features of drivers in fatigue state considering gender factor[J].Journal of Southeast University (Natural Science Edition),2019,49(3):595-602.[doi:10.3969/j.issn.1001-0505.2019.03.027]
点击复制

考虑性别因素的驾驶人疲劳状态HRV非线性特征()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
49
期数:
2019年第3期
页码:
595-602
栏目:
交通运输工程
出版日期:
2019-05-20

文章信息/Info

Title:
Nonlinear heart rate variability features of drivers in fatigue state considering gender factor
作者:
曾超12王文军12李燕3陈朝阳4张超飞12成波12
1清华大学汽车安全与节能国家重点实验室, 北京 100084; 2清华大学汽车工程系, 北京 100084; 3石河子大学医学院第一附属医院, 石河子 832003; 4Department of Biomedical Engineering, Wayne State University, Detroit MI 48201, USA
Author(s):
Zeng Chao12 Wang Wenjun12 Li Yan3 Chen Chaoyang4 Zhang Chaofei12 Cheng Bo12
1State Key Laboratory of Automotive Safety and Energy, Tsinghua University, Beijing 100084, China
2Department of Automotive Engineering, Tsinghua University, Beijing 100084, China
3First Affiliated Hospital of Medical College, Shihezi University, Shihezi 832003, China
4Department of Biomedical Engineering, Wayne State University, Detroit MI 48201, USA
关键词:
驾驶疲劳 心电 心率变异性 性别因素
Keywords:
driving fatigue electrocardiogram heart rate variability gender factor
分类号:
U491.6
DOI:
10.3969/j.issn.1001-0505.2019.03.027
摘要:
通过心率变异性(HRV)的非线性特征,研究了疲劳对驾驶人自主神经系统(ANS)的影响.招募被试进行模拟驾驶实验,记录实验过程中的心电信号.通过Poincaré散点图、近似熵和样本熵等非线性方法,提取13个HRV特征.分析所有被试不同精神状态HRV特征的差异,研究特定性别的被试从清醒状态到疲劳状态HRV特征的变化,分别比较清醒和疲劳状态HRV特征的性别差异.对所有被试,5个特征在疲劳状态显著(Mann-Whitney U检验,p<0.01)上升;男性2个特征在疲劳状态显著上升;女性3个特征在疲劳状态显著上升.清醒状态仅有1个特征在男性与女性之间存在显著性差异,而疲劳状态有5个特征存在显著性差异.驾驶人在疲劳状态ANS的变异性和/或复杂度增加,并且存在性别差异.与清醒状态相比,男性与女性ANS的变异性和/或复杂度在疲劳状态存在更多差异.
Abstract:
The effects of fatigue on driver’s autonomic nervous system(ANS)were researched through nonlinear heart rate variability(HRV)features. Volunteers were recruited to perform simulated driving, and electrocardiograms(ECGs)were recorded during the experimental process. Thirteen HRV features were exacted through nonlinear methods such as Poincaré plot, approximate entropy, sample entropy and so on. The differences of HRV features related to mental states in all subjects were analyzed. The gender-specific changes from the alert state to the fatigue state were investigated. The gender differences in the alert state and the fatigue state were compared, respectively. For all subjects, five features increased significantly(Mann-Whitney U test, p<0.01)in the fatigue state compared to the alert state. As for males, two features increased significantly, and for females, three features increased significantly. Only one feature was found with a significant difference between males and females in the alert state, while five features were found with a significant difference in the fatigue state. The variations and/or complexities of driver’s ANS are increased in the fatigue state with gender differences. And there are more variations and/or complexities of driver’s ANS between males and females in the fatigue state compared to the alert state.

参考文献/References:

[1] 孙丽璐, 吴奇, 赵娟, 等. 我国2004-2015年交通事故影响因素实证研究[J]. 西南大学学报(自然科学版), 2018, 40(11):112-118. DOI: 10.13718/j.cnki.xdzk.2018.11.016.
Sun L L, Wu Q, Zhao J, et al. An empirical study of the influencing factors of traffic accidents in China from 2004 to 2015 [J]. Journal of Southwest University(Natural Science Edition), 2018, 40(11): 112-118. DOI:10.13718/j.cnki.xdzk.2018.11.016. (in Chinese)
[2] Vearrier D, Vearrier L, McKeever R, et al. Issues in driving impairment[J]. Disease-a-Month, 2016, 62(4): 72-116. DOI:10.1016/j.disamonth.2016.02.002.
[3] Liang W C, Yuan J, Sun D C, et al. Changes in physiological parameters induced by indoor simulated driving: Effect of lower body exercise at mid-term break[J]. Sensors, 2009, 9(9): 6913-6933. DOI:10.3390/s90906913.
[4] Rajendra Acharga U, Paul Joseph K, Kannathal N, et al. Heart rate variability: A review[J]. Medical & Biological Engineering & Computing, 2006, 44(12): 1031-1051. DOI:10.1007/s11517-006-0119-0.
[5] Voss A, Schroeder R,Heitmann A, et al. Short-term heart rate variability: Influence of gender and age in healthy subjects[J]. PLoS One, 2015, 10(3): e0118308. DOI:10.1371/journal.pone.0118308.
[6] Tran Y,Wijesuriya N, Tarvainen M, et al. The relationship between spectral changes in heart rate variability and fatigue[J]. Journal of Psychophysiology, 2009, 23(3): 143-151. DOI:10.1027/0269-8803.23.3.143.
[7] Rodriguez-Ibañez N, García-Gonzalez M A, Cruz M A F D L, et al. Changes in heart rate variability indexes due to drowsiness in professional drivers measured in a real environment[C]// 2012 Computing in Cardiology. Krakow, Poland, 2012: 913-916.
[8] Abtahi F, Anund A, Fors C, et al. Association of drivers’ sleepiness with heart rate variability: A pilot study with drivers on real roads[C]// EMBEC & NBC 2017. Tampere, Finland, 2017: 149-152. DOI:10.1007/978-981-10-5122-7_38.
[9] Shaffer F, Ginsberg J P. An overview of heart rate variability metrics and norms[J]. Frontiers in Public Health, 2017, 5: 258. DOI:10.3389/fpubh.2017.00258.
[10] Alves M, Garner D M, Fontes A M G G, et al. Linear and complex measures of heart rate variability during exposure to traffic noise in healthy women[J].Complexity,2018,2018:2158391.DOI:10.1155/2018/2158391.
[11] Bolea J, Pueyo E, Orini M, et al. Influence of heart rate in non-linear HRV indices as a sampling rate effect evaluated on supine and standing[J].Frontiers in Physiology,2016,7:501.DOI:10.3389/fphys.2016.00501.
[12] 曾超, 王文军, 陈朝阳,等. 驾驶员疲劳状态生理信号的DFA[J]. 传感器与微系统, 2016, 35(1): 7-10. DOI:10.13873/J.1000-9787(2016)01-0007-04.
Zeng C, Wang W J, Chen C Y, et al. DFA of physiological signals in driver’s fatigue state[J]. Transducer and Microsystem Technologies, 2016, 35(1): 7-10. DOI:10.13873/J.1000-9787(2016)01-0007-04. (in Chinese)
[13] 祝荣欣, 王金武, 唐汉,等. 基于心率变异性的联合收割机驾驶员疲劳分析与评价[J]. 农业工程学报, 2016, 32(1): 77-83. DOI: 10.11975/j.issn.1002-6819.2016.01.010.
Zhu R X, Wang J W, Tang H, et al. Analysis and evaluation of combine harvester driver fatigue based on heart rate variability[J]. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(1): 77-83. DOI:10.11975/j.issn.1002-6819.2016.01.010. (in Chinese)
[14] Xhyheri B, Manfrini O, Mazzolini M, et al. Heart rate variability today[J]. Progress in Cardiovascular Diseases, 2012, 55(3): 321-331. DOI: 10.1016/j.pcad.2012.09.001.
[15] 秦明新, 关玉杰, 英克. 正常青、老年人心率关联维数研究[J]. 中国生物医学工程学报, 1998, 17(1): 30-35. DOI:10.3969/j.issn.0258-8021.1998.01.005.
Qin M X, Guan Y J, Ying K. Research on correlation dimension of heart rate in healthy young and old subjects[J]. Chinese Journal of Biomedical Engineering, 1998, 17(1): 30-35. DOI:10.3969/j.issn.0258-8021.1998.01.005. (in Chinese)
[16] Brindle R C, Ginty A T, Phillips A C, et al. Heart rate complexity: A novel approach to assessing cardiac stress reactivity[J]. Psychophysiology, 2016, 53(4): 465-472. DOI:10.1111/psyp.12576.
[17] Ding H. Characterization of local complex structures in a recurrence plot to improve nonlinear dynamic discriminant analysis[J]. Physical Review E, 2014, 89: 013313. DOI:10.1103/physreve.89.013313.
[18] Figueiredo R, Pereira R, Neto O P. Nonlinear analysis is the most suitable method to detect changes in heart autonomic control after exercise of different durations[J]. Computers in Biology and Medicine, 2018, 97: 83-88. DOI:10.1016/j.compbiomed.2018.04.011.
[19] 屈肖蕾, 成波, 林庆峰, 等. 基于驾驶员转向操作特性的疲劳驾驶检测[J]. 汽车工程, 2013, 35(9): 803-807, 831. DOI:10.3969/j.issn.1000-680X.2013.09.010.
Qu X L, Cheng B, Lin Q F, et al. Drowsy driving detection based on driver’s steering operation characteristics[J]. Automotive Engineering, 2013, 35(9): 803-807, 831. DOI:10.3969/j.issn.1000-680X.2013.09.010. (in Chinese)
[20] 张希波, 成波, 冯睿嘉. 基于方向盘操作的驾驶人疲劳状态实时检测方法[J]. 清华大学学报(自然科学版), 2010, 50(7): 1072-1076, 1081. DOI:10.16511/j.cnki.qhdxxb.2010.07.025.
Zhang X B, Cheng B, Feng R J. Real-time detection of driver drowsiness based on steering performance[J]. Journal of Tsinghua University(Science and Technology), 2010, 50(7): 1072-1076, 1081. DOI:10.16511/j.cnki.qhdxxb.2010.07.025. (in Chinese)
[21] Electrophysiology Task Force of the European Society of Cardiology the North American Society of Pacing. Heart rate variability: Standards of measurement, physiological interpretation and clinical use[J]. Circulation, 1996, 93(5): 1043-1065. DOI: 10.1161/01.CIR.93.5.1043.
[22] Tarvainen M P, Niskanen J P, Lipponen J A, et al. Kubios HRV—Heart rate variability analysis software[J]. Computer Methods and Programs in Biomedicine, 2014, 113(1): 210-220. DOI:10.1016/j.cmpb.2013.07.024.
[23] 国家技术监督局. GB 3100~3102—93 量和单位[S]. 北京: 中国标准出版社, 1994.
[24] 曾超, 蒋奇云, 陈朝阳, 等. 心率变异性分析在新生儿疼痛检测中的应用[J]. 物理学报, 2014, 63(20): 208704-1-208704-9. DOI:10.7498/aps.63.208704.
Zeng C, Jiang Q Y, Chen C Y, et al. Application of heart rate variability analysis to pain detection for newb orns[J]. Acta Physica Sinica, 2014, 63(20): 208704-1-208704-9. DOI:10.7498/aps.63.208704. (in Chinese)
[25] Melillo P, Bracale M, Pecchia L. Nonlinear heart rate variability features for real-life stress detection case study: Students under stress due to university examination[J]. BioMedical Engineering OnLine, 2011, 10(1): 96. DOI:10.1186/1475-925x-10-96.
[26] Kubiková A, Kozumplík J, Nováková Z, et al. Heart rate variability analysed by Poincaré plot in patients with metabolic syndrome[J]. Journal of Electrocardiology, 2016, 49(1): 23-28. DOI:10.1016/j.jelectrocard.2015.11.004.
[27] da Silva E L P, Pereira R, Reis L N, et al. Heart ratedetrended fluctuation indexes as estimate of obstructive sleep apnea severity[J]. Medicine, 2015, 94(4): e516. DOI:10.1097/md.0000000000000516.
[28] Goshvarpour A, Goshvarpour A. Poincare indices for analyzing meditative heart rate signals[J]. Biomedical Journal, 2015, 38(3): 229. DOI:10.4103/2319-4170.143528.
[29] Manzano B M, Vanderlei L C M, Ramos E M, et al. Acute effects of smoking on autonomic modulation: Analysis by Poincaré plot[J]. Arq Bras Cardiol, 2011, 96(2): 154-160. DOI: 10.1590/S0066-782X2011005000013.
[30] Aktaruzzaman M, Sassi R. Parametric estimation of sample entropy in heart rate variability analysis[J]. Biomedical Signal Processing and Control, 2014, 14: 141-147. DOI:10.1016/j.bspc.2014.07.011.
[31] 庄建军, 宁新宝, 邹鸣, 等. 两种熵测度在量化射击运动员短时心率变异性信号复杂度上的一致性[J]. 物理学报, 2008, 57(5): 2805-2811. DOI:10.3321/j.issn:1000-3290.2008.05.029.
Zhuang J J, Ning X B, Zou M, et al. Agreement of two entropy-based measures on quantifying the complexity of short-term heart rate variability signals from professional shooters[J]. Acta Physica Sinica, 2008, 57(5): 2805-2811. DOI:10.3321/j.issn:1000-3290.2008.05.029. (in Chinese)
[32] Papaioannou V, Giannakou M, Maglaveras N, et al. Investigation of heart rate and blood pressure variability, baroreflex sensitivity, and approximate entropy in acute brain injury patients[J]. Journal of Critical Care, 2008, 23(3): 380-386. DOI:10.1016/j.jcrc.2007.04.006.
[33] Wang F W, Wang H, Fu R R. Real-time ECG-based detection of fatigue driving using sample entropy[J]. Entropy, 2018, 20(3): 196. DOI:10.3390/e20030196.
[34] Balocchi R, Varanini M, Paoletti G, et al. Paradoxical response to an emotional task: Trait characteristics and heart-rate dynamics[J]. International Journal of Clinical and Experimental Hypnosis, 2015, 63(2): 182-197. DOI:10.1080/00207144.2015.1002690.
[35] Chen S W,Liaw J W, Chang Y J, et al. A cycling movement based system for real-time muscle fatigue and cardiac stress monitoring and analysis[J]. PLoS One, 2015, 10(6): e0130798. DOI:10.1371/journal.pone.0130798.
[36] Mohebbi M, Ghassemian H. Prediction of paroxysmal atrial fibrillation using recurrence plot-based features of the RR-interval signal[J]. Physiological Measurement, 2011, 32(8): 1147-1162. DOI:10.1088/0967-3334/32/8/010.
[37] Moodithaya S, Avadhany S T. Gender differences in age-related changes in cardiac autonomic nervous function[J]. Journal of Aging Research, 2012(4): 679345. DOI: 10.1155/2012/679345.
[38] Huang Y P, Sari N N, Lee T T. Early detection of driver drowsiness by WPT and FLFNN models[C]//2016 IEEE International Conference on Systems, Man, and Cybernetics(SMC).Budapest, Hungary, 2016: 000463-000468. DOI:10.1109/SMC.2016.7844283.

备注/Memo

备注/Memo:
收稿日期: 2018-10-26.
作者简介: 曾超(1982—),男,博士;王文军(联系人),男,博士,副教授,博士生导师,wangxiaowenjun@tsinghua.edu.cn.
基金项目: 国家自然科学基金资助项目(51565051, 51575303, U1664263)、清华大学汽车安全与节能国家重点实验室开放基金资助项目(KF11011, KF14222).
引用本文: 曾超,王文军,李燕,等.考虑性别因素的驾驶人疲劳状态HRV非线性特征[J].东南大学学报(自然科学版),2019,49(3):595-602. DOI:10.3969/j.issn.1001-0505.2019.03.027.
更新日期/Last Update: 2019-05-20