[1]钱海敏,宗周红,谢冠宇,等.1860级钢绞线静力弹塑性精细化模拟[J].东南大学学报(自然科学版),2019,49(4):624-630.[doi:10.3969/j.issn.1001-0505.2019.04.003]
 Qian Haimin,Zong Zhouhong,Xie Guanyu,et al.Refined simulation of elastic-plastic static behavior of grade 1860 strand wires[J].Journal of Southeast University (Natural Science Edition),2019,49(4):624-630.[doi:10.3969/j.issn.1001-0505.2019.04.003]
点击复制

1860级钢绞线静力弹塑性精细化模拟()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
49
期数:
2019年第4期
页码:
624-630
栏目:
交通运输工程
出版日期:
2019-07-20

文章信息/Info

Title:
Refined simulation of elastic-plastic static behavior of grade 1860 strand wires
作者:
钱海敏宗周红谢冠宇廖聿宸杜孟林
东南大学土木工程学院, 南京 211189
Author(s):
Qian Haimin Zong Zhouhong Xie Guanyu Liao Yuchen Du Menglin
School of Civil Engineering, Southeast University, Nanjing 211189, China
关键词:
钢绞线 精细化模拟 拉伸 截面应力分布
Keywords:
strand wires refined simulation tensile section stress distribution
分类号:
U444
DOI:
10.3969/j.issn.1001-0505.2019.04.003
摘要:
为研究不同接触状态对钢绞线截面塑性发展的影响,以及捻角对钢绞线轴向刚度和整体受力性能的影响,基于钢绞线的空间几何理论在Solidworks中建立1860级7丝钢绞线的三维几何模型.在Hypermesh中建立了有限元模型,并与已有文献的试验结果进行对比,验证了有限元模型的有效性,并基于ABAQUS进行了静力弹塑性的精细化参数分析.研究结果表明,钢丝截面的初始接触状态对钢绞线截面应力分布和截面塑性发展有较大影响;弹性阶段的钢绞线截面应力分布较为不均,当延伸率达到2%后,截面应力分布较为均匀;钢绞线的轴向刚度随捻角的增大而减小;进入塑性受力阶段后,在相同延伸率下,钢绞线产生的轴向力随捻角的增大呈线性减小.
Abstract:
To study the influence of section initial contact state on plastic development, and that of lay angle on the axial stiffness and mechanical properties of Grade 1860 seven-wire steel strand, a three-dimensional geometric model of the strand is established in Solidworks based on the space geometry theory of wire strands. Then, a finite element model of it is established via Hypermesh, and its validity is verified by a comparison with the experimental results listed in related reference, and refined parametric static elastic-plastic simulations are conducted based on the model in Abaqus. The results show that, the initial contact state has a significant influence on the plasticity development and stress distribution of steel strand sections. At the elastic stage, the stress distribution of steel strands is relatively asymmetrical, but when the elongation is over 2%, it becomes relatively uniform. Meanwhile, the axial stiffness of strand wires declines with the in crease in the lay angle. At the plastic stage, the axial load of steel strands decreases linearly with the increase of the lay angle under the same elongation.

参考文献/References:

[1] 邓保全,张全刚,范银平,等.SWRH82B高碳钢盘条生产实践[J].金属制品,2012,38(1): 39-42.DOI:10.3969/j.issn.1003-4226.2012.01.011.
Deng B Q,Zhang Q G,Fan Y P,et al.Production practice of SWRH82B high carbon steel wire rod[J].Steel Wire Products,2012,38(1): 39-42.DOI:10.3969/j.issn.1003-4226.2012.01.011. (in Chinese)
[2] Jiang W G,Warby M K,Henshall J L.Statically indeterminate contacts in axially loaded wire strand[J].European Journal of Mechanics—A,2008,27(1): 69-78.DOI:10.1016/j.euromechsol.2007.02.003.
[3] Kim S Y,Lee P S.Modeling of helically stranded cables using multiple beam finite elements and its application to torque balance design[J].Construction and Building Materials,2017,151: 591-606.DOI:10.1016/j.conbuildmat.2017.06.052.
[4] Jiang W G,Yao M S,Walton J M.A concise finite element model for simple straight wire rope strand[J].International Journal of Mechanical Sciences,1999,41(2): 143-161.DOI:10.1016/s0020-7403(98)00039-3.
[5] Utting W S,Jones N.The response of wire rope strands to axial tensile loads: Part Ⅱ.Comparison of experimental results and theoretical predictions[J].International Journal of Mechanical Sciences,1987,29(9): 621-636.DOI:10.1016/0020-7403(87)90034-8.
[6] Utting W S,Jones N.The response of wire rope strands to axial tensile loads: Part Ⅰ.Experimental results and theoretical predictions[J].International Journal of Mechanical Sciences,1987,29(9): 605-619.DOI:10.1016/0020-7403(87)90033-6.
[7] 孔庆凯,万鹏.钢绞线的基本力学性能及其有限元方法模拟[J].四川建筑,2003,23(1): 20-22.DOI:10.3969/j.issn.1007-8983.2003.01.010.
[8] Ghoreishi S R,Messager T,Cartraud P,et al.Validity and limitations of linear analytical models for steel wire strands under axial loading,using a 3D FE model[J].International Journal of Mechanical Sciences,2007,49(11): 1251-1261.DOI:10.1016/j.ijmecsci.2007.03.014.
[9] Yu Y J,Chen Z H,Liu H B,et al.Finite element study of behavior and interface force conditions of seven-wire strand under axial and lateral loading[J].Construction and Building Materials,2014,66: 10-18.DOI:10.1016/j.conbuildmat.2014.05.009.
[10] 陈冲,袁行飞.钢绞线截面应力精细化分析[J].浙江大学学报(工学版),2017,51(5): 841-846,878.DOI:10.3785/j.issn.1008-973X.2017.05.001.
Chen C,Yuan X F.Fine analysis of section stress of steel strand[J].Journal of Zhejiang University(Engineering Science),2017,51(5): 841-846,878.DOI:10.3785/j.issn.1008-973X.2017.05.001. (in Chinese)
[11] Feyrer K.Wire ropes: Tension,endurance,reliability[M].Berlin: Springer,2015: 60-67.
[12] Costello G A.Theory of wire rope[M].New York: Springer,1997: 11-19.
[13] Abdullah A B M,Rice J A,Hamilton H R,et al.Experimental and numerical evaluation of unbonded posttensioning tendons subjected to wire breaks[J].Journal of Bridge Engineering,2016,21(10): 04016066.DOI:10.1061/(asce)be.1943-5592.0000940.
[14] Judge R,Yang Z,Jones S W,et al.Full 3D finite element modelling of spiral strand cables[J].Construction and Building Materials,2012,35: 452-459.DOI:10.1016/j.conbuildmat.2011.12.073.

备注/Memo

备注/Memo:
收稿日期: 2019-01-28.
作者简介: 钱海敏(1991—),男,博士生;宗周红(联系人),男,博士,教授,博士生导师,zongzh@seu.edu.cn.
基金项目: 国家自然科学基金资助项目(51678141).
引用本文: 钱海敏,宗周红,谢冠宇,等.1860级钢绞线静力弹塑性精细化模拟[J].东南大学学报(自然科学版),2019,49(4):624-630. DOI:10.3969/j.issn.1001-0505.2019.04.003.
更新日期/Last Update: 2019-07-20