[1]姜德义,刘文浩,陈结,等.分级不连续循环载荷作用下混凝土的疲劳特性[J].东南大学学报(自然科学版),2019,49(4):631-637.[doi:10.3969/j.issn.1001-0505.2019.04.004]
 Jiang Deyi,Liu Wenhao,Chen Jie,et al.Fatigue performance of ordinary concrete subjected to stepwise discontinuous cyclic loading[J].Journal of Southeast University (Natural Science Edition),2019,49(4):631-637.[doi:10.3969/j.issn.1001-0505.2019.04.004]
点击复制

分级不连续循环载荷作用下混凝土的疲劳特性()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
49
期数:
2019年第4期
页码:
631-637
栏目:
土木工程
出版日期:
2019-07-20

文章信息/Info

Title:
Fatigue performance of ordinary concrete subjected to stepwise discontinuous cyclic loading
作者:
姜德义12刘文浩12陈结12潘孝康12孙中光13
1重庆大学煤矿灾害动力学与控制国家重点试验室, 重庆 400044; 2重庆大学资源及环境科学学院, 重庆 400044; 3中煤科工集团重庆研究院有限公司瓦斯灾害监控与应急技术国家重点实验室, 重庆 400039
Author(s):
Jiang Deyi12 Liu Wenhao12 Chen Jie12 Pan Xiaokang12 Sun Zhongguang13
1State Key Laboratory for Coal Mine Disaster Dynamics and Controls, Chongqing University, Chongqing 400044, China
2College of Resource and Environmental Sciences, Chongqing University, Chongqing 400044, China
3State Key Laboratory of the Gas Disaster Detecting, Preventing and Emergency Controlling, China Coal Technology and Engineering Group Chongqing Research Institute, Chongqing 400039, China
关键词:
混凝土 不连续疲劳 时间间隔 残余应变
Keywords:
concrete discontinuous fatigue time interval residual deformation
分类号:
TU473.1
DOI:
10.3969/j.issn.1001-0505.2019.04.004
摘要:
为研究混凝土在不连续周期荷载作用下的疲劳特性,在常规疲劳加载路径中加入时间间隔,对比开展了混凝土的常规疲劳试验和不连续疲劳试验.研究结果表明:在不连续疲劳试验中,加入时间间隔后的应力循环产生的残余应变(塑性变形)明显大于加入时间间隔前的应力循环产生的残余应变;时间间隔效应从0.062的应力水平开始影响混凝土的疲劳性能,并逐步增强,至应力水平为0.25后趋于稳定;时间间隔后循环内混凝土的弹性模量大于时间间隔前循环内混凝土的弹性模量;不连续疲劳损伤累积速度明显大于常规疲劳损伤,混凝土的不连续疲劳寿命远小于常规疲劳寿命;混凝土不同组分间的残余应力在时间间隔内持续作用,致使裂隙持续扩展,造成时间间隔后循环内残余变形较快发展.
Abstract:
In order to study the fatigue performance of concrete under discontinuous cyclic loads, time intervals were added into the conventional fatigue load path, and the conventional fatigue test and discontinuous fatigue test were carried out. Results show that in the discontinuous fatigue test, the residual deformation(plastic deformation)produced in the stress cycles after adding intervals is larger than that in the stress cycles before adding intervals. The time intervals start to affect the fatigue performance of concrete when the stress ratio(defined as the ratio of maximum stress to the compression strength)is 0.062, and the effect enhances gradually with the stress ratio increasing to 0.25, after which the effect tends to be stable. The elasticity modulus in the cycles after adding intervals is larger than that in the cycles before adding intervals. The cumulative rate of discontinuous fatigue damage is obviously higher than that of conventional fatigue damage, and the discontinuous fatigue life of concrete is much shorter than that of the conventional fatigue. The residual stress between different materials of concrete continues to act during time intervals, causing the crack to continue to expand, resulting in the rapid development of residual deformation in the cycle after adding intervals.

参考文献/References:

[1] Liu W, Li Y P, Yang C H, et al. Permeability characteristics of mudstone cap rock and interlayers in bedded salt formations and tightness assessment for underground gas storage caverns[J].Engineering Geology, 2015, 193: 212-223. DOI:10.1016/j.enggeo.2015.04.010.
[2] Lin W, Chen J, Jiang D Y, et al. Tightness and suitability evaluation of abandoned salt caverns served as hydrocarbon energies storage under adverse geological conditions(AGC)[J].Applied Energy, 2016, 178: 703-720. DOI:10.1016/j.apenergy.2016.06.086.
[3] Kim H M, Rutqvist J, Ryu D W, et al. Exploring the concept of compressed air energy storage(CAES)in lined rock caverns at shallow depth: A modeling study of air tightness and energy balance[J].Applied Energy, 2012, 92: 653-667. DOI:10.1016/j.apenergy.2011.07.013.
[4] 夏才初,张平阳,周舒威,等.大规模压气储能洞室稳定性和洞周应变分析[J].岩土力学,2014,35(5):1391-1398.DOI:10.16285/j.rsm.2014.05.013.
Xia C C, Zhang P Y, Zhou S W, et al. Stability and tangential strain analysis of large-scale compressed air energy storage cavern[J]. Rock and Soil Mechanics, 2014, 35(5): 1391-1398. DOI:10.16285/j.rsm.2014.05.013. (in Chinese)
[5] Raju M, Kumar Khaitan S. Modeling and simulation of compressed air storage in caverns: A case study of the Huntorf plant[J].Applied Energy, 2012, 89(1): 474-481. DOI:10.1016/j.apenergy.2011.08.019.
[6] Holmen J O. Fatigue of concrete by constant and variable amplitude loading[J]. Fatigue Strength of Concrete Structures, ACI, 1982, 75: 71-110.
[7] 王瑞敏, 赵国藩, 宋玉普. 混凝土的受压疲劳性能研究[J]. 土木工程学报, 1991, 24(4): 38-47. DOI:10.15951/j.tmgcxb.1991.04.006.
Wang R M, Zhao G F, Song Y P. Fatigue of plain concrete under compression[J]. China Civil Engineering Journal, 1991, 24(4): 38-47. DOI:10.15951/j.tmgcxb.1991.04.006. (in Chinese)
[8] 李朝阳,宋玉普,车轶.混凝土的单轴抗压疲劳损伤累积性能研究[J].土木工程学报,2002,35(2):38-40, 56. DOI:10.3321/j.issn:1000-131X.2002.02.006.
Li C Y, Song Y P, Che Y. Study on cumulative damage behavior of concrete under uniaxial cyclic load[J]. China Civil Engineering Journal, 2002, 35(2): 38-40, 56. DOI:10.3321/j.issn:1000-131X.2002.02.006. (in Chinese)
[9] 朱劲松, 肖汝诚, 宋玉普. 混凝土双轴抗压疲劳累积损伤规律试验研究[J]. 土木工程学报, 2005, 38(6): 104-109. DOI:10.3321/j.issn:1000-131X.2005.06.018.
Zhu J S, Xiao R C, Song Y P. Experimental study on the cumulative fatigue damage of plain concrete under biaxial compression[J]. China Civil Engineering Journal, 2005, 38(6): 104-109. DOI:10.3321/j.issn:1000-131X.2005.06.018. (in Chinese)
[10] 吴佩刚, 赵光仪, 白利明. 高强混凝土抗压疲劳性能研究[J]. 土木工程学报, 1994, 27(3): 33-40. DOI: 10.15951/j.tmgcxb.1994.03.004.
Wu P G, Zhao G Y, Bai L M. Fatigue behavior of high strength concrete under compressive cyclic loading[J]. China Civil Engineering Journal, 1994, 27(3): 33-40. DOI:10.15951/j.tmgcxb.1994.03.004. (in Chinese)
[11] Kim J K, Kim Y Y. Experimental study of the fatigue behavior of high strength concrete[J]. Cement and Concrete Research, 1996, 26(10): 1513-1523. DOI:10.1016/0008-8846(96)00151-2.
[12] 肖建庄, 李宏. 再生混凝土单轴受压疲劳性能[J]. 土木工程学报, 2013, 46(2): 62-69. DOI:10.15951/j.tmgcxb.2013.02.001.
Xiao J Z, Li H. Investigation on the fatigue behavior of recycled aggregate concrete under uniaxial compression[J]. China Civil Engineering Journal, 2013, 46(2): 62-69. DOI:10.15951/j.tmgcxb.2013.02.001. (in Chinese)
[13] 葛修润. 周期荷载下岩石大型三轴试件的变形和强度特性研究[J]. 岩土力学, 1987, 8(2): 11-19. DOI:10.16285/j.rsm.1987.02.002.
Ge X R. Study on deformation and strength behaviour of the large-sized triaxial rock samples under cyclic loading[J]. Rock and Soil Mechanics, 1987, 8(2): 11-19. DOI:10.16285/j.rsm.1987.02.002. (in Chinese)
[14] 葛修润, 卢应发. 循环荷载作用下岩石疲劳破坏和不可逆变形问题的探讨[J]. 岩土工程学报, 1992(3):56–60.
  Ge X R, Lu Y F. Study on fatigue failure and irreversible deformation of rock under cyclic loading[J]. Chinese Journal of Geotechnical Engineering, 1992(3):56-60.(in Chinese)
[15] 李西蒙, 刘长友, Peng S S, 等. 单轴分级循环加载条件下砂岩疲劳变形特性与损伤模型研究[J]. 中国矿业大学学报, 2017, 46(1): 8-17.DOI:10.13247/j.cnki.jcumt.000620.
Li X M, Liu C Y, Peng S S, et al. Fatigue deformation characteristics and damage model of sandstone subjected to uniaxial step cyclic loading[J]. Journal of China University of Mining & Technology, 2017, 46(1): 8-17.DOI:10.13247/j.cnki.jcumt.000620. (in Chinese)
[16] 卢高明,李元辉,张希巍,等.周期荷载作用下黄砂岩疲劳破坏变形特性试验研究[J].岩土工程学报,2015,37(10):1886-1892.DOI:10.11779/CJGE201510017.
Lu G M, Li Y H, Zhang X W, et al. Fatigue deformation characteristics of yellow sandstone under cyclic loading[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(10): 1886-1892. DOI:10.11779/CJGE201510017. (in Chinese)
[17] 祝艳波, 黄兴, 郭杰, 等. 循环荷载作用下石膏质岩的疲劳特性试验研究[J]. 岩石力学与工程学报, 2017, 36(4): 940-952. DOI:10.13722/j.cnki.jrme.2016.0660.
Zhu Y B, Huang X, Guo J, et al. Experimental study of fatigue characteristics of gypsum rock under cyclic loading[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(4): 940-952. DOI:10.13722/j.cnki.jrme.2016.0660. (in Chinese)
[18] 姜德义,崔遥,范金洋,等.非连续循环荷载作用下岩盐力学特性试验研究[J].岩土力学,2017,38(5):1327-1334.DOI:10.16285/j.rsm.2017.05.013.
Jiang D Y, Cui Y, Fan J Y, et al. Experimental study of mechanical characteristics of salt rock under discontinuous cyclic loading[J]. Rock and Soil Mechanics, 2017, 38(5): 1327-1334. DOI:10.16285/j.rsm.2017.05.013. (in Chinese)
[19] 蒋宇, 葛修润, 任建喜. 岩石疲劳破坏过程中的变形规律及声发射特性[J]. 岩石力学与工程学报, 2004, 23(11): 1810-1814. DOI:10.3321/j.issn:1000-6915.2004.11.005.
Jiang Y, Ge X R, Ren J X. Deformation rules and acoustic emission characteristics of rocks in process of fatigue failure[J]. Chinese Journal of Rock Mechanics and Engineering, 2004, 23(11): 1810-1814. DOI:10.3321/j.issn:1000-6915.2004.11.005. (in Chinese)
[20] 王瑞敏, 宋玉普, 赵国藩. 混凝土疲劳累积损伤准则[J]. 水利学报, 1992(5):74–78. DOI: 10.13243/j.cnki.slxb.1992.05.011.
[21] 赵造东. 水工混凝土受压疲劳性能及累积损伤研究[D]. 昆明: 昆明理工大学, 2011.
  Zhao Z D. Studies on the fatigue property and cumulative damage of hydraulic concrete under the compressive fatigue load[D]. Kunming: Kunming University of Science and Technology, 2011.(in Chinese)
[22] Eberhardt E, Stead D, Stimpson B. Quantifying progressive pre-peak brittle fracture damage in rock during uniaxial compression[J]. International Journal of Rock Mechanics and Mining Sciences, 1999, 36(3): 361-380. DOI:10.1016/S0148-9062(99)00019-4.
[23] 姜德义, 范金洋, 陈结, 等. 应力因素下的岩盐卸荷扩容试验研究[J]. 岩土力学, 2013, 34(S1): 41-46. DOI:10.16285/j.rsm.2013.s1.002.
Jiang D Y, Fan J Y, Chen J, et al. Test study of unloading capacity expansion characteristics of salt rock under stress factors[J]. Rock and Soil Mechanics, 2013, 34(S1): 41-46. DOI:10.16285/j.rsm.2013.s1.002. (in Chinese)

相似文献/References:

[1]李富民,袁迎曙,杜健民,等.氯盐腐蚀钢绞线的受拉性能退化特征[J].东南大学学报(自然科学版),2009,39(2):340.[doi:10.3969/j.issn.1001-0505.2009.02.028]
 Li Fumin,Yuan Yingshu,Du Jianmin,et al.Deterioration of tensile behavior of steel strands corroded by chloride[J].Journal of Southeast University (Natural Science Edition),2009,39(4):340.[doi:10.3969/j.issn.1001-0505.2009.02.028]
[2]金祖权,孙伟,侯保荣,等.混凝土的高温变形与微结构演化[J].东南大学学报(自然科学版),2010,40(3):619.[doi:10.3969/j.issn.1001-0505.2010.03.035]
 Jin Zuquan,Sun Wei,Hou Baorong,et al.Deformation and microstructure evolution of concrete subjected to elevated temperature[J].Journal of Southeast University (Natural Science Edition),2010,40(4):619.[doi:10.3969/j.issn.1001-0505.2010.03.035]
[3]潘华,邱洪兴.基于损伤力学的混凝土疲劳损伤模型[J].东南大学学报(自然科学版),2006,36(4):605.[doi:10.3969/j.issn.1001-0505.2006.04.023]
 Pan Hua,Qiu Hongxing.Fatigue model of concrete based on continuum damage mechanics[J].Journal of Southeast University (Natural Science Edition),2006,36(4):605.[doi:10.3969/j.issn.1001-0505.2006.04.023]
[4]耿飞,钱春香.图像分析技术在混凝土塑性收缩裂缝定量测试与评价中的应用研究[J].东南大学学报(自然科学版),2003,33(6):773.[doi:10.3969/j.issn.1001-0505.2003.06.022]
 Geng Fei,Qian Chunxiang.Image analysis technique for quantitative testing and evaluation of plastic shrinkage cracks in concrete[J].Journal of Southeast University (Natural Science Edition),2003,33(4):773.[doi:10.3969/j.issn.1001-0505.2003.06.022]
[5]余红发,孙伟,麻海燕,等.盐湖地区钢筋混凝土结构使用寿命的预测模型及其应用[J].东南大学学报(自然科学版),2002,32(4):638.[doi:10.3969/j.issn.1001-0505.2002.04.023]
 Yu Hongfa,Sun Wei,Ma Haiyan,et al.Prediction model for service life of reinforced concrete structures in salt lakes and its applications[J].Journal of Southeast University (Natural Science Edition),2002,32(4):638.[doi:10.3969/j.issn.1001-0505.2002.04.023]
[6]田正宏,白凯国,朱静.透水模板布改善混凝土表层质量试验研究[J].东南大学学报(自然科学版),2008,38(1):146.[doi:10.3969/j.issn.1001-0505.2008.01.028]
 Tian Zhenhong,Bai Kaiguo,Zhu Jing.Study on surface quality of concrete improved by infiltrating formwork texture[J].Journal of Southeast University (Natural Science Edition),2008,38(4):146.[doi:10.3969/j.issn.1001-0505.2008.01.028]
[7]汪基伟,陈玉泉.平面应变混凝土强度变形试验与等效单轴应变本构模型[J].东南大学学报(自然科学版),2005,35(5):775.[doi:10.3969/j.issn.1001-0505.2005.05.026]
 Wang Jiwei,Chen Yuquan.Strength-deformation test and equivalent uniaxial constitutive model of concrete in plane strain[J].Journal of Southeast University (Natural Science Edition),2005,35(4):775.[doi:10.3969/j.issn.1001-0505.2005.05.026]
[8]余红发,孙伟,王甲春,等.盐湖地区侵蚀性离子在混凝土中的扩散及其相互作用[J].东南大学学报(自然科学版),2003,33(2):156.[doi:10.3969/j.issn.1001-0505.2003.02.010]
 Yu Hongfa,Sun Wei,Wang Jiachun,et al.Diffusion of corrosive ions into concrete exposed to salt lake and interaction between corrosive-ions and concrete[J].Journal of Southeast University (Natural Science Edition),2003,33(4):156.[doi:10.3969/j.issn.1001-0505.2003.02.010]
[9]高建明,孙伟.钢纤维砼抗折疲劳寿命分布规律的研究[J].东南大学学报(自然科学版),1997,27(1):96.[doi:10.3969/j.issn.1001-0505.1997.01.020]
 [J].Journal of Southeast University (Natural Science Edition),1997,27(4):96.[doi:10.3969/j.issn.1001-0505.1997.01.020]
[10]樊华,宋启根.用统计连续理论研究混凝土的力学性能[J].东南大学学报(自然科学版),1996,26(6):64.[doi:10.3969/j.issn.1001-0505.1996.06.013]
 Fan Hua,Song Qigen.Study of Mechanical Properties of Concrete on the Statictical Continuum Theory[J].Journal of Southeast University (Natural Science Edition),1996,26(4):64.[doi:10.3969/j.issn.1001-0505.1996.06.013]

备注/Memo

备注/Memo:
收稿日期: 2018-12-02.
作者简介: 姜德义(1962—),男,博士,教授,博士生导师,deyij@cqu.edu.cn.
基金项目: 国家科技重大专项课题资助项目(2016ZX05045-001)、国家重点研发计划资助项目(2017YFC0804202)、国家自然科学基金资助项目(51604044)、重庆市自然科学基金资助项目(cstc2015jcyjA90011).
引用本文: 姜德义,刘文浩,陈结,等.分级不连续循环载荷作用下混凝土的疲劳特性[J].东南大学学报(自然科学版),2019,49(4):631-637. DOI:10.3969/j.issn.1001-0505.2019.04.004.
更新日期/Last Update: 2019-07-20