[1]朱绩超,贡金鑫,熊亮军,等.不同循环次数下RC桥墩抗震性能试验研究[J].东南大学学报(自然科学版),2019,49(4):652-663.[doi:10.3969/j.issn.1001-0505.2019.04.007]
 Zhu Jichao,Gong Jinxin,Xiong Liangjun,et al.Experimental study on the seismic behavior of reinforced concrete bridge piers under varied loading cycles[J].Journal of Southeast University (Natural Science Edition),2019,49(4):652-663.[doi:10.3969/j.issn.1001-0505.2019.04.007]
点击复制

不同循环次数下RC桥墩抗震性能试验研究()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
49
期数:
2019年第4期
页码:
652-663
栏目:
交通运输工程
出版日期:
2019-07-20

文章信息/Info

Title:
Experimental study on the seismic behavior of reinforced concrete bridge piers under varied loading cycles
作者:
朱绩超12贡金鑫1熊亮军2仇建磊1李鑫1
1大连理工大学土木工程学院, 大连 116024; 2大连交通大学土木工程学院, 大连 116028
Author(s):
Zhu Jichao12 Gong Jinxin1 Xiong Liangjun2 Qiu Jianlei1 Li Xin1
1School of Civil Engineering, Dalian University of Technology, Dalian 116024, China
2School of Civil Engineering, Dalian Jiaotong University, Dalian 116028, China
关键词:
抗震性能 荷载循环次数 拟静力试验 钢筋混凝土桥墩 轴压比
Keywords:
seismic behavior loading cycle number quasi-static loading test reinforced concrete bridge pier axial force ratio
分类号:
U442.55
DOI:
10.3969/j.issn.1001-0505.2019.04.007
摘要:
通过轴压比为0.05和0.15的8个钢筋混凝土(RC)桥墩拟静力试验,研究不同荷载循环次数(同一位移幅值下分别循环3,10,20次)对RC桥墩的抗震性能影响.结果表明:循环往复荷载作用下试件破坏形态为弯剪破坏,主要破坏特征为混凝土斜向明显开裂、纵筋屈曲及箍筋断裂,滞回曲线有明显捏缩;随轴压比从0.05增大到0.15,RC桥墩的屈服荷载和极限荷载增大约50%,而极限位移明显减小,位移延性系数减小约30%;不同轴压比条件下,循环加载次数对试件抗震性能均有影响,在试件达到峰值荷载之前,循环加载次数对其承载能力和变形性能影响较小,而峰值荷载之后影响较大,变形能力明显降低,循环次数的增加会加重试件的累积损伤程度,进而削弱其抗震性能,尤其会在较大程度上降低其延性性能和耗能能力.
Abstract:
Quasi-static displacement loading tests of eight reinforced concrete(RC)bridge piers with axial force ratios of 0.05 and 0.15 were conducted to investigate the effect of loading cycle numbers(3, 10, and 20 cycles for a given displacement amplitude)on the seismic behavior of RC bridge piers. Test results demonstrate that the bridge pier specimens subjected to cyclic loading failed in flexural-shear mode, which was evident by the presence of diagonal cracks, buckled longitudinal reinforcement, fractured stirrup, as well as saliently pinched lateral force-displacement hysteretic loops. As the axial force ratio increased from 0.05 to 0.15, there were about 50% increase in their yield and peak strengths, significant decrease in ultimate displacement, and about 30% decrease in the displacement ductility in the RC bridge piers. In addition, the effect of loading cycle numbers on the seismic behavior of the RC bridge pier specimens is explored. Prior to the attainment of peak strength, the variation of loading cycle numbers does not obviously impact the force and deformation responses of the test specimens. The effect of the number of loading cycles on seismic behavior is more significant after the peak load, and the deformation capacity is significantly reduced. Conversely, increasing the loading cycle number during the post-peak loading stage accelerates damage accumulation and impairs the seismic performance of the test specimens due to the substantial reduction of their seismic ductility and energy dissipation capacity.

参考文献/References:

[1] Sezen H, Moehle J P. Seismic tests of concrete columns with light transverse reinforcement[J]. ACI Structural Journal, 2006,103(6): 842-849. DOI:10.14359/18236.
[2] Elwood K J, Matamoros A B, Wallace J W, et al. Update to ASCE/SEI 41 concrete provisions [J]. Earthquake Spectra, 2007, 23(3): 493-523. DOI: 10.1193/1.2757714.
[3] 贡金鑫, 张勤, 王雪婷. 从汶川地震桥梁震害看现行国内外桥梁的抗震设计方法(一)——抗震设防标准与地震计算[J].公路交通科技, 2010, 27( 9): 44-54. DOI: 10.3969/j.issn.1002-0268.2010.09.009.
Gong J X,Zhang Q,Wang X T.Comparative study on bridge seismic design approaches in different specifications based on survey of disaster in Wenchuan earthquake(1)— seismic fortification criterion and earthquake response calculation[J]. Journal of Highway and Transportation Research and Development, 2010, 27(9): 44-54. DOI:10.3969/j.issn.1002-0268.2010.09.009. (in Chinese)
[4] Setzler E J, Sezen H. Model for the lateral behavior of reinforced concrete columns including shear deformations[J].Earthquake Spectra, 2008, 24(2): 493-511. DOI:10.1193/1.2932078.
[5] Mostafaei H, Kabeyasawa T. Axial-shear-flexure interaction approach for reinforced concrete columns [J]. ACI Structural Journal, 2007, 104(2): 218-226. DOI:10.14359/18534.
[6] Zhang Q, Gong J X, Zhang Y Q. Lateral-load behavior prediction and pushover analysis of reinforced concrete columns including shear effects[J].Advances in Structural Engineering, 2013, 16(4): 741-758. DOI:10.1260/1369-4332.16.4.741.
[7] 张勤, 贡金鑫, 马颖. 低周反复荷载下弯剪破坏钢筋混凝土柱的变形性能[J]. 东南大学学报(自然科学版), 2014, 44(3): 643-649. DOI:10.3969/j.issn.1001-0505.2014.03.034.
Zhang Q, Gong J X, Ma Y. Deformation performance of reinforced concrete columns failing in flexural-shear under cyclic loading[J]. Journal of Southeast University(Natural Science Edition), 2014, 44(3): 643-649. DOI:10.3969/j.issn.1001-0505.2014.03.034. (in Chinese)
[8] 清华大学、西南交通大学、北京交通大学土木工程结构专家组. 汶川地震建筑震害分析[J]. 建筑结构学报, 2008, 29(4): 1-9.
  Civil and Structural Groups of Tsinghua University, Xinan Jiaotong University and Beijing Jiaotong University. Analysis on seismic damage of buildings in the Wenchuan earthquake[J]. Journal of Building Structures, 2008, 29(4): 1-9.(in Chinese)
[9] 李宏男, 肖诗云, 霍林生. 汶川地震震害调查与启示[J]. 建筑结构学报, 2008, 29(4): 10-19. DOI:10.14006/j.jzjgxb.2008.04.002.
Li H N, Xiao S Y, Huo L S. Damage investigation and analysis of engineering structures in the Wenchuan earthquake[J]. Journal of Building Structures, 2008, 29(4): 10-19. DOI:10.14006/j.jzjgxb.2008.04.002. (in Chinese)
[10] Higashi Y, Ohkubo M, Ohtsuka M. Influences of loading excursions on restoring force characteristics and failure modes of reinforced concrete columns [C]// The Sixth World Conference on Earthquake Engineering. New Delhi, India: India Society of Earthquake Technology, 1977.
[11] Kawashima K, Koyama T. Effect of number of loading cycles on dynamic characteristics of reinforced concrete bridge pier columns [J]. Doboku Gakkai Ronbunshu, 1988(392): 205-213. DOI:10.2208/jscej.1988.392_205.
[12] Kawashima K, Koyama T. Effects of cyclic loading hysteresis on dynamic behavior of reinforced concrete bridge piers[J].Doboku Gakkai Ronbunshu, 1988(398): 139-146. DOI:10.2208/jscej.1988.398_139.
[13] Ranf R T, Nelson J M, Price Z, et al. Damage accumulation in lightly confined reinforced concrete bridge columns, PEER Report 2005/08 [R]. Berkeley, CA,USA: Pacific Earthquake Engineering Research Center, University of California, Berkeley, 2006.
[14] Pujol S. Drift capacity of reinforced concrete columns subjected to displacement reversals [D]. West Lafayette, Indiana: Purdue University, 2002.
[15] Pujol S, Sozen M A, Ramirez J A. Displacement history effects on drift capacity of reinforced concrete columns [J]. ACI Structural Journal, 2006, 103(2): 253-262. DOI: 10.14359/15183.
[16] 钱稼茹, 冯宝锐. 不同抗震等级钢筋混凝土柱抗震性能试验研究[J]. 建筑结构学报, 2014, 35(7): 105-114. DOI:10.14006/j.jzjgxb.2014.07.013.
Qian J R, Feng B R. Experimental study on seismic behavior of different seismic grade RC columns[J]. Journal of Building Structures, 2014, 35(7): 105-114. DOI:10.14006/j.jzjgxb.2014.07.013. (in Chinese)
[17] 张勤, 贡金鑫, 马颖. 单调和反复荷载作用下弯剪破坏钢筋混凝土柱荷载-变形关系试验研究及简化模型[J]. 建筑结构学报, 2014, 35(3): 138-148. DOI:10.14006/j.jzjgxb.2014.03.019.
Zhang Q, Gong J X, Ma Y. Study on lateral load-deformation relations of flexural-shear failure columns under monotonic and cyclic loading[J]. Journal of Building Structures, 2014, 35(3): 138-148. DOI:10.14006/j.jzjgxb.2014.03.019. (in Chinese)
[18] 薛建阳, 韩琛, 刘祖强, 等. 不同加载方式下实腹式型钢混凝土T形截面柱损伤试验研究[J]. 建筑结构学报, 2016, 37(5): 112-121. DOI:10.14006/j.jzjgxb.2016.05.012.
Xue J Y, Han C, Liu Z Q, et al. Experimental investigation on damage of solid-web steel reinforced concrete T-shaped columns under different loading patterns[J]. Journal of Building Structures, 2016, 37(5): 112-121. DOI:10.14006/j.jzjgxb.2016.05.012. (in Chinese)
[19] Kunnath S, El-Bahy A, Taylor A, et al. Cumulativeseismic damage of reinforced concrete damage piers[R]. Gaithersburg, MD, USA: Building and Fire Research Laboratory, National Institute of Standards and Technology, 1997.
[20] El-Bahy A, Kunnath S K, Stone W C, et al. Cumulative seismic damage of circular bridge columns: Benchmark and low-cycle fatigue tests[J].ACI Structural Journal, 1999, 96(4): 633-641. DOI:10.14359/701.
[21] El-Bahy A, Kunnath S, Stone W, et al. Cumulative seismic damage of circular bridge columns: Variable amplitude tests[J]. ACI Structural Journal, 1999, 96(5): 711-719. DOI:10.14359/724.
[22] Taylor A W, El-Bahy A, Stone W, et al. Effect of load path on damage to concrete bridge piers [C]// Joint Meeting of the U.S./Japan Cooperative Program in Natural Resources Panel on Wind and Seismic Effects. Gaithersburg, MD, USA: The National Institute of Standards and Technology(NIST), 1996:149-158.
[23] 刘伯权, 徐云中, 白绍良. 钢筋混凝土柱在等幅对称位移循环加载下的低周疲劳性能[J]. 重庆建筑大学学报, 1996, 18(2): 34-42.
  Liu B Q, Xu Y Z, Bai S L. Low-cyclic fatigue behavior of reinforced concrete column subjected to symmetric displacement cycling[J]. Journal of Chongqing Jianzhu University, 1996, 18(2): 34-42.(in Chinese)
[24] 刘伯权, 白绍良, 徐云中,等. 钢筋混凝土柱低周疲劳性能的试验研究[J]. 地震工程与工程振动, 1998, 18(4): 82-89. DOI: 10.3969/j.issn.1000-1301.1998.04.012.
Liu B Q, Bai S L, Xu Y Z, et al. Experimental study of low-cyclic behavior of concrete columns[J]. Earthquake Engineering and Engineering Vibration, 1998, 18(4): 82-89. DOI:10.3969/j.issn.1000-1301.1998.04.012. (in Chinese)
[25] 刘鸣, 刘伯权. 钢筋混凝土柱低周疲劳力学性能分析[J]. 长安大学学报(自然科学版), 2012, 32(5): 65-70. DOI:10.19721/j.cnki.1671-8879.2012.05.012.
Liu M, Liu B Q. Low-cycle fatigue damage for shear behavior of reinforced concrete columns[J]. Journal of Chang’an University(Natural Science Edition), 2012, 32(5): 65-70. DOI:10.19721/j.cnki.1671-8879.2012.05.012. (in Chinese)
[26] Takemura H, Kawashima K. Effect of loading hysteresis on ductility capacity of reinforced concrete bridge piers[J]. Journal of Structural Engineering, 1997, 43A: 849-858.(in Japanese)
[27] Waki H, Shima H. Effect of loading history on softening of load deflection curve of reinforced concrete column[J]. Proceedings of the Japan Concrete Institute, 2008, 30(3): 1009-1014.(in Japanese)
[28] 杨晓明, 丰定国, 杨睿. 不同加载制度下钢筋混凝土柱抗震性能的试验研究[J]. 工业建筑, 2005, 35(9): 42-45. DOI:10.3321/j.issn:1000-8993.2005.09.012.
Yang X M, Feng D G, Yang R. Experimental study on aseismic performance of RC column under different loading systems[J]. Industrial Construction, 2005, 35(9): 42-45. DOI:10.3321/j.issn:1000-8993.2005.09.012. (in Chinese)
[29] Japan Road Association. Design specifications of highway bridges. Part V: Seismic design [S]. Tokyo: Japan Road Association, Ministry of Construction, 2002.
[30] Zhu L, Elwood K J, Haukaas T. Classification and seismic safety evaluation of existing reinforced concrete columns[J].Journal of Structural Engineering, 2007, 133(9): 1316-1330. DOI:10.1061/(asce)0733-9445(2007)133:9(1316).
[31] 朱绩超, 王响, 赵丽华. 地震荷载作用下钢筋混凝土柱的滑移变形[J]. 大连交通大学学报, 2017, 38(3): 96-100. DOI:10.13291/j.cnki.djdxac.2017.03.022.
Zhu J C, Wang X, Zhao L H. Study on slip deformation of reinforced concrete column under seismic loading[J]. Journal of Dalian Jiaotong University, 2017, 38(3): 96-100. DOI:10.13291/j.cnki.djdxac.2017.03.022. (in Chinese)
[32] 朱绩超, 王响, 张勤. 考虑粘结-滑移与剪切作用的钢筋混凝土柱侧向变形分析[J]. 工程力学, 2015, 32(7): 128-135.
  Zhu J C, Wang X, Zhang Q. Lateral deformations analysis of reinforced concrete columns incorporating bond-slip and shear effects[J]. Engineering Mechanics, 2015, 32(7): 128-135.(in Chinese)
[33] 王东升, 司炳君, 孙治国, 等. 地震作用下钢筋混凝土桥墩塑性铰区抗剪强度试验[J]. 中国公路学报, 2011, 24(2): 34-41. DOI:10.19721/j.cnki.1001-7372.2011.02.007.
Wang D S, Si B J, Sun Z G, et al. Experiment on shear strength of reinforced concrete bridge column in plastic hinge zone under seismic effect[J]. China Journal of Highway and Transport, 2011, 24(2): 34-41. DOI:10.19721/j.cnki.1001-7372.2011.02.007. (in Chinese)
[34] 孙治国, 王东升, 郭迅, 等. 钢筋混凝土墩柱等效塑性铰长度研究[J]. 中国公路学报, 2011, 24(5): 56-64. DOI:10.19721/j.cnki.1001-7372.2011.05.009.
Sun Z G, Wang D S, Guo X, et al. Research on equivalent plastic hinge length of reinforced concrete bridge column[J]. China Journal of Highway and Transport, 2011, 24(5): 56-64. DOI:10.19721/j.cnki.1001-7372.2011.05.009. (in Chinese)
[35] 赵国藩. 高等钢筋混凝土结构学[M]. 北京: 机械工业出版社,2005:380-382.
  Zhao G F.Advanced reinforced concrete structures[M]. Beijing: China Machine Press, 2005:380-382.(in Chinese)

相似文献/References:

[1]蒋永生,蓝宗建,冯纪寅.钢筋混凝土框架节点梁端抗震性能的试验研究[J].东南大学学报(自然科学版),1980,10(4):32.[doi:10.3969/j.issn.1001-0505.1980.04.004]
 Jiang Yong-sheng,Lan Zong-jian,Feng Ji-yin.An Experimental Study of Aseismic Behavior at Beam Ends of Reinforced Concrete Frame Joints[J].Journal of Southeast University (Natural Science Edition),1980,10(4):32.[doi:10.3969/j.issn.1001-0505.1980.04.004]

备注/Memo

备注/Memo:
收稿日期: 2018-12-30.
作者简介: 朱绩超(1981—), 男, 博士生, 工程师; 贡金鑫(联系人),男, 博士, 教授, 博士生导师,jinxingong@163.com.
基金项目: 国家自然科学基金资助项目(51678104).
引用本文: 朱绩超,贡金鑫,熊亮军,等.不同循环次数下RC桥墩抗震性能试验研究[J].东南大学学报(自然科学版),2019,49(4):652-663. DOI:10.3969/j.issn.1001-0505.2019.04.007.
更新日期/Last Update: 2019-07-20