[1]顾斌,谢甫哲,雷丽恒,等.大跨桥梁结构三维日照温度场计算方法[J].东南大学学报(自然科学版),2019,49(4):664-671.[doi:10.3969/j.issn.1001-0505.2019.04.008]
 Gu Bin,Xie Fuzhe,Lei Liheng,et al.Computational method for 3D sunshine temperature field of long-span bridge structures[J].Journal of Southeast University (Natural Science Edition),2019,49(4):664-671.[doi:10.3969/j.issn.1001-0505.2019.04.008]
点击复制

大跨桥梁结构三维日照温度场计算方法()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
49
期数:
2019年第4期
页码:
664-671
栏目:
交通运输工程
出版日期:
2019-07-20

文章信息/Info

Title:
Computational method for 3D sunshine temperature field of long-span bridge structures
作者:
顾斌谢甫哲雷丽恒高望
江苏大学土木工程与力学学院, 镇江 212013
Author(s):
Gu Bin Xie Fuzhe Lei Liheng Gao Wang
Faculty of Civil Engineering and Mechanics, Jiangsu University, Zhenjiang 212013, China
关键词:
大跨桥梁结构 三维日照温度场 光线跟踪技术 空间剖分技术 计算机图形学理论
Keywords:
long-span bridge structure 3D sunshine temperature field ray-tracking technology space segmentation technology computer graphics theory
分类号:
U443.38
DOI:
10.3969/j.issn.1001-0505.2019.04.008
摘要:
为了研究桥梁结构的三维日照温度场及其效应,基于计算机图形学理论中的光线跟踪技术和空间剖分技术,提出了三维复杂结构表面日照阴影的快速识别方法,在此基础上又基于传热学理论和有限元理论提出了大跨桥梁结构三维日照温度场的模拟方法.最后以某大跨混凝土连续箱梁桥为例,对该方法进行了验证,并对大跨混凝土连续箱梁桥的三维日照温度场进行了分析.结果表明:大跨混凝土连续箱梁桥的悬臂板并不能为其腹板提供有效遮挡,悬臂板遮挡的影响深度约等于悬臂板长度,在影响深度范围之内腹板表面温度基本呈线性变化,而在影响深度之外温度基本不变;顶板上下表面和底板下表面的温度在桥梁纵向上的温差很小,但底板内表面温度在桥梁纵向上的温差较大,可达5.3 ℃.该方法可为大跨桥梁结构的日照温度效应的更准确计算提供依据,同时也可对大跨桥梁结构响应中的温度效应进行更精确的分离.
Abstract:
In order to study the three-dimensional(3D)sunshine temperature field and its effect on bridge structures, a quick identification method for the sun shadow on the surface of complex 3D structures is proposed based on the ray-tracking technology and space segmentation technology in the computer graphics theories. And then, a simulation method for calculating the 3D temperature field of long-span bridge structures is proposed based on the heat transfer theory and finite element analysis. Finally, by taking a long-span concrete continuous box girder bridge as an example, the simulation method is verified and the 3D sunshine temperature field of the long-span concrete box girder bridge is analyzed. The results show that the cantilever slabs of the long-span concrete box girder bridge are not long enough to protect the web from the solar radiation, and the depth of shielding effect is nearly equal to the length of cantilever slab. Within the depth of shielding, the temperature of the web surface basically changes in a linear fashion, while outside the depth of shielding, there is no change in temperature. The temperature difference between the deck slab and outer surface of the bottom slab in the longitudinal direction of the bridge is small, while the temperature difference of the inner surface of the bottom slab along the longitudinal direction of the bridge is large, which can reach 5.3 ℃. It can provide a basis for more accurate calculation of the sunshine temperature effect on long-span bridge structures, and the temperature effects on structural responses of the long-span bridge can be separated more precisely.

参考文献/References:

[1] 刘兴法. 混凝土结构的温度应力分析[M]. 北京: 人民交通出版社, 1991:1-3.
  Liu X F. Thermal stress analysis for concrete structures[M]. Beijing: China Communication Press, 1991:1-3.(in Chinese)
[2] Zhou G D, Yi T H. A summary review of correlations between temperatures and vibration properties of long-span bridges[J].Mathematical Problems in Engineering, 2014, 2014: 1-19. DOI:10.1155/2014/638209.
[3] Zhou G D, Yi T H. Thermal load in large-scale bridges: A state-of-the-art review[J].International Journal of Distributed Sensor Networks, 2013, 9(12): 217983. DOI:10.1155/2013/217983.
[4] Roberts-Wollman C L, Breen J E, Cawrse J. Measurements of thermal gradients and their effects on segmental concrete bridge[J].Journal of Bridge Engineering, 2002, 7(3): 166-174. DOI:10.1061/(asce)1084-0702(2002)7:3(166).
[5] Hedegaard B D, French C E W, Shield C K. Investigation of thermal gradient effects in the I-35W St. Anthony Falls Bridge[J].Journal of Bridge Engineering, 2013, 18(9): 890-900. DOI:10.1061/(asce)be.1943-5592.0000438.
[6] Miao C Q, Shi C H. Temperature gradient and its effect on flat steel box girder of long-span suspension bridge[J].Science China Technological Sciences, 2013, 56(8): 1929-1939. DOI:10.1007/s11431-013-5280-8.
[7] 刘扬, 张海萍, 邓扬, 等. 基于实测数据的悬索桥钢箱梁温度场特性研究[J]. 中国公路学报, 2017, 30(3): 56-64. DOI:10.3969/j.issn.1006-3897.2017.03.006.
Liu Y, Zhang H P, Deng Y, et al. Temperature field characteristic research of steel box girder for suspension bridge based on measured data[J]. China Journal of Highway and Transport, 2017, 30(3): 56-64. DOI:10.3969/j.issn.1006-3897.2017.03.006. (in Chinese)
[8] 戴公连, 温学桧, 苏海霆. 寒冷季节桥上无砟轨道横竖向温度梯度研究[J]. 华中科技大学学报(自然科学版), 2015, 43(7): 1-5. DOI:10.13245/j.hust.150701.
Dai G L, Wen X H, Su H T. Study on horizontal and vertical temperature gradient of ballastless track on bridge in cold season[J]. Journal of Huazhong University of Science and Technology(Nature Science Edition), 2015, 43(7): 1-5. DOI:10.13245/j.hust.150701. (in Chinese)
[9] 顾斌, 陈志坚, 陈欣迪. 基于气象参数的混凝土箱梁日照温度场仿真分析[J]. 东南大学学报(自然科学版), 2012, 42(5): 950-955. DOI:10.3969/j.issn.1001-0505.2012.05.028.
Gu B, Chen Z J, Chen X D. Simulation analysis for solar temperature field of concrete box girder based on meteorological parameters[J]. Journal of Southeast University(Natural Science Edition), 2012, 42(5): 950-955. DOI:10.3969/j.issn.1001-0505.2012.05.028. (in Chinese)
[10] Kim S H, Park S J, Wu J X, et al. Temperature variation in steel box girders of cable-stayed bridges during construction[J].Journal of Constructional Steel Research, 2015, 112: 80-92. DOI:10.1016/j.jcsr.2015.04.016.
[11] Zhou L R, Xia Y, Brownjohn J M W, et al. Temperature analysis of a long-span suspension bridge based on field monitoring and numerical simulation[J].Journal of Bridge Engineering, 2016, 21(1): 04015027. DOI:10.1061/(asce)be.1943-5592.0000786.
[12] 代璞, 钱永久. 斜拉桥H形截面混凝土桥塔短期温度特性[J]. 西南交通大学学报, 2014, 49(1): 59-65. DOI:10.3969/j.issn.0258-2724.2014.01.010.
Dai P, Qian Y J. Short-term temperature characteristics of H-shaped section concrete pylon of cable-stayed bridge[J]. Journal of Southwest Jiaotong University, 2014, 49(1): 59-65. DOI:10.3969/j.issn.0258-2724.2014.01.010. (in Chinese)
[13] 张宁, 刘永健, 刘江, 等. 高原高寒地区H形混凝土桥塔日照温度效应[J]. 交通运输工程学报, 2017, 17(4): 66-77. DOI:10.3969/j.issn.1671-1637.2017.04.007.
Zhang N, Liu Y J, Liu J, et al. Temperature effects of H-shaped concrete pylon in arctic-alpine plateau region[J]. Journal of Traffic and Transportation Engineering, 2017, 17(4): 66-77. DOI:10.3969/j.issn.1671-1637.2017.04.007. (in Chinese)
[14] Gu B, Chen Z J, Chen X D. Temperature gradients in concrete box girder bridge under effect of cold wave[J].Journal of Central South University, 2014, 21(3): 1227-1241. DOI:10.1007/s11771-014-2057-6.
[15] Watt A. 3D computer graphics[M]. 包宏, 译. 北京: 机械工业出版社, 2005: 13-18.
  Watt A. 3D computer graphics[M]. Translated by Bao H. Beijing: China Machine Press, 2005:13-18.(in Chinese)
[16] 顾斌, 陈志坚, 陈欣迪. 大尺寸混凝土箱梁日照温度场的实测与仿真分析[J]. 中南大学学报(自然科学版), 2013,44(3):1252-1261.
   Gu B, Chen Z J, Chen X D. Measurement and simulation on solar temperature field of large size concrete box girder[J]. Journal of Central South University(Science and Technology), 2013, 44(3): 1252-1261.(in Chinese)
[17] Li D N, Maes M A, Dilger W H. Thermal design criteria for deep prestressed concrete girders based on data from Confederation Bridge[J].Canadian Journal of Civil Engineering, 2004, 31(5): 813-825. DOI:10.1139/l04-041.

备注/Memo

备注/Memo:
收稿日期: 2018-12-21.
作者简介: 顾斌(1986—),男,博士,讲师,gubin@ujs.edu.cn.
基金项目: 国家自然科学基金资助项目(51641804)、江苏省自然科学基金资助项目(BK20160536, BK20160534)、江苏大学高级人才科研启动基金资助项目(15JDG170).
引用本文: 顾斌,谢甫哲,雷丽恒,等.大跨桥梁结构三维日照温度场计算方法[J].东南大学学报(自然科学版),2019,49(4):664-671. DOI:10.3969/j.issn.1001-0505.2019.04.008.
更新日期/Last Update: 2019-07-20