[1]刘鹏,邵光辉,黄容聘.微生物沉积碳酸钙胶结砂土力学特性及本构模型[J].东南大学学报(自然科学版),2019,49(4):720-726.[doi:10.3969/j.issn.1001-0505.2019.04.015]
 Liu Peng,Shao Guanghui,Huang Rongpin.Mechanical properties and constitutive model of MICP-cemented sand[J].Journal of Southeast University (Natural Science Edition),2019,49(4):720-726.[doi:10.3969/j.issn.1001-0505.2019.04.015]
点击复制

微生物沉积碳酸钙胶结砂土力学特性及本构模型()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
49
期数:
2019年第4期
页码:
720-726
栏目:
材料科学与工程
出版日期:
2019-07-20

文章信息/Info

Title:
Mechanical properties and constitutive model of MICP-cemented sand
作者:
刘鹏邵光辉黄容聘
南京林业大学土木工程学院, 南京 210037; 南京林业大学江苏省水土保持与生态修复重点实验室, 南京 210037
Author(s):
Liu Peng Shao Guanghui Huang Rongpin
School of Civil Engineering, Nanjing Forestry University, Nanjing 210037, China
Jiangsu Province Key Laboratory of Soil and Water Conservation and Ecological Restoration, Nanjing Forestry University, Nanjing 210037, China
关键词:
微生物固化土 碳酸钙 胶结 微生物诱导方解石沉积(MICP)
Keywords:
bio-mediated soil calcium carbonate cementation microbial induced carbonate precipitation(MICP)
分类号:
TU522.07
DOI:
10.3969/j.issn.1001-0505.2019.04.015
摘要:
为建立一个微生物固化土体的本构模型,分析研究了微生物固土机理,发现微生物诱导碳酸盐沉积(MICP)过程中形成的碳酸钙所起作用主要是增强相邻土颗粒之间连接,增大土体刚度,使其在相同应变下可承担更高应力.故将微生物固化处理后的土体看成未处理的砂土(只考虑填充作用影响)和新产生的碳酸钙胶结两部分,分别进行计算模拟,而二者的刚度之和为处理后土体的总刚度.为了对MICP过程形成的碳酸钙胶结进行模拟,提出了一个临界状态计算模型,该模型包括胶结的屈服面方程、硬化规律和流动法则,将其与已有的砂土计算模型配合使用,可对各种微生物固化砂土体的应力-应变特性进行计算模拟.将提出的本构模型理论计算结果与微生物固化土体的三轴压缩试验结果进行对比,结果表明,所提出的模型能够反映微生物固化土体的应力-应变规律.
Abstract:
In order to establish a constitutive model of MICP-cemented sand, the mechanisms of soil improvement by microbial induced carbonate precipitation(MICP)are investigated. The results show that the function of the calcite induced by microbe is to increase the stiffness of soil by enhancing the connection between soil particles, thus resulting in the high bearing capacity of MICP-cemented sand. Therefore, the MICP-cemented sand can be regarded as untreated sand(only considering the effect of filling effect)and the newly produced calcium carbonate cementation, which are simulated separately. They are then combined to give the overall stiffness of the MICP-cemented sand. For simulating the cementation mechanics of the calcite induced by microbe, a critical state model is proposed, which includes a yield surface equation, hardening law and the flow rule of cementation. It is able to simulate different stress-strain relationships of MICP-cemented sand by combining the existing constitutive calculation model of sand. The theoretical results of the proposed model are compared with those of triaxial compression tests, which indicate that the proposed model can reflect the stress-strain relationship of MICP-cemented sand.

参考文献/References:

[1] DeJong J T,Soga K,Banwart S A,et al.Soil engineering in vivo:Harnessing natural biogeochemical systems for sustainable,multi-functional engineering solutions[J].Journal of the Royal Society Interface,2011,8(54): 1-15.DOI:10.1098/rsif.2010.0270.
[2] Mitchell J K.New frontiers in geotechnical engineering: challenges and opportunities[C]//GeoShanghai International Conference 2006.Shanghai,China: American Society of Civil Engineers,2006: 1-15.DOI:10.1061/40861(193)1.
[3] Dejong J T,Soga K,Kavazanjian E,et al.Biogeochemical processes and geotechnical applications:Progress,opportunities and challenges[J].Géotechnique,2013,63(4): 287-301.DOI:10.1680/geot.sip13.p.017.
[4] 许朝阳,张莉.微生物改性对粉土强度的影响[J].建筑科学,2009,25(5): 45-48.DOI:10.3969/j.issn.1002-8528.2009.05.011.
Xu Z Y,Zhang L.The effect of microbes on strength of silt[J].Building Science,2009,25(5): 45-48.DOI:10.3969/j.issn.1002-8528.2009.05.011. (in Chinese)
[5] 杜静,周东.微生物改良膨胀土的试验研究[J].水利水电技术,2012,43(7): 103-105,87.DOI:10.3969/j.issn.1000-0860.2012.07.029.
Du J,Zhou D.Experimental study on improvement of expansive soil with microbe[J].Water Resources and Hydropower Engineering,2012,43(7): 103-105,87.DOI:10.3969/j.issn.1000-0860.2012.07.029. (in Chinese)
[6] 方祥位,申春妮,楚剑,等.微生物沉积碳酸钙固化珊瑚砂的试验研究[J].岩土力学,2015,36(10): 2773-2779.DOI:10.16285/j.rsm.2015.10.005.
Fang X W,Shen C N,Chu J,et al.An experimental study of coral sand enhanced through microbially-induced precipitation of calcium carbonate[J].Rock and Soil Mechanics,2015,36(10): 2773-2779.DOI:10.16285/j.rsm.2015.10.005. (in Chinese)
[7] 邵光辉,尤婷,赵志峰,等.微生物注浆固化粉土的微观结构与作用机理[J].南京林业大学学报(自然科学版),2017,41(2): 129-135.DOI:10.3969/j.issn.1000-2006.2017.02.019.
Shao G H,You T,Zhao Z F,et al.Microstructure and mechanism of microbial cementation silt treated by bio-grouting[J].Journal of Nanjing Forestry University(Natural Science Edition),2017,41(2): 129-135.DOI:10.3969/j.issn.1000-2006.2017.02.019. (in Chinese)
[8] 邵光辉,冯建挺,赵志峰,等.微生物砂浆防护粉土坡面的强度与抗侵蚀性影响因素分析[J].农业工程学报,2017,33(11): 133-139.DOI:10.11975/j.issn.1002-6819.2017.11.017.
Shao G H,Feng J T,Zhao Z F,et al.Influence factor analysis related to strength and anti-erosion stability of silt slope with microbial mortar protective covering[J].Transactions of the Chinese Society of Agricultural Engineering,2017,33(11): 133-139.DOI:10.11975/j.issn.1002-6819.2017.11.017. (in Chinese)
[9] 钱春香,王安辉,王欣.微生物灌浆加固土体研究进展[J].岩土力学,2015,36(6): 1537-1548.DOI:10.16285/j.rsm.2015.06.003.
Qian C X,Wang A H,Wang X.Advances of soil improvement with bio-grouting[J].Rock and Soil Mechanics,2015,36(6): 1537-1548.DOI:10.16285/j.rsm.2015.06.003. (in Chinese)
[10] 何稼,楚剑,刘汉龙,等.微生物岩土技术的研究进展[J].岩土工程学报,2016,38(4): 643-653.DOI:10.11779/CJGE201604008.
He J,Chu J,Liu H L,et al.Research advances in biogeotechnologies[J].Chinese Journal of Geotechnical Engineering,2016,38(4): 643-653.DOI:10.11779/CJGE201604008. (in Chinese)
[11] Soon N W,Lee L M,Khun T C,et al.Improvements in engineering properties of soils through microbial-induced calcite precipitation[J].KSCE Journal of Civil Engineering,2013,17(4): 718-728.DOI:10.1007/s12205-013-0149-8.
[12] Cui M J,Zheng J J,Zhang R J,et al.Influence of cementation level on the strength behaviour of bio-cemented sand[J].Acta Geotechnica,2017,12(5): 971-986.DOI:10.1007/s11440-017-0574-9.
[13] Montoya B M,DeJong J T.Stress-strain behavior of sands cemented by microbially induced calcite precipitation[J].Journal of Geotechnical and Geoenvironmental Engineering,2015,141(6): 04015019.DOI:10.1061/(asce)gt.1943-5606.0001302.
[14] DeJong J T,Mortensen B M,Martinez B C,et al.Bio-mediated soil improvement[J].Ecological Engineering,2010,36(2): 197-210.DOI:10.1016/j.ecoleng.2008.12.029.
[15] 方祥位,李晶鑫,李捷,等.珊瑚砂微生物固化体三轴压缩试验及损伤本构模型研究[J].岩土力学,2018,39(S1): 1-8.DOI:10.16285/j.rsm.2017.2101.
Fang X W,Li J X,Li J,et al.Study of triaxial compression test and damage constitutive model of biocemented coral sand columns[J].Rock and Soil Mechanics,2018,39(S1): 1-8.DOI:10.16285/j.rsm.2017.2101. (in Chinese)
[16] Lee M L,Ng W S,Tanaka Y.Stress-deformation and compressibility responses of bio-mediated residual soils[J].Ecological Engineering,2013,60: 142-149.DOI:10.1016/j.ecoleng.2013.07.034.
[17] Gat D,Tsesarsky M,Shamir D,et al.Accelerated microbial-induced CaCO3 precipitation in a defined co-culture of ureolytic and non-ureolytic bacteria[J].Biogeosciences Discussions,2013,10(11): 17249-17273.DOI:10.5194/bgd-10-17249-2013.
[18] Hammes F,Verstraete W.Key roles of pH and calcium metabolism in microbial carbonate precipitation[J].Reviews in Environmental Science & Biotechnology,2002,1(1):3-7.DOI:10.1023/A:1015135629155.
[19] Cardoso R,Pires I,Duarte S O D,et al.Effects of clay’s chemical interactions on biocementation[J].Applied Clay Science,2018,156: 96-103.DOI:10.1016/j.clay.2018.01.035.
[20] Evans T,Khoubani A,Montoya B.Simulating mechanical response in bio-cemented sands[M]//Computer Methods and Recent Advances in Geomechanics.CRC Press,2014: 1569-1574.DOI:10.1201/b17435-277.
[21] Vatsala A,Nova R,Murthy B R S.Elastoplastic model for cemented soils[J].Journal of Geotechnical and Geoenvironmental Engineering,2001,127(8): 679-687.DOI:10.1061/(asce)1090-0241(2001)127:8(679).
[22] 刘鹏,丁文其.双对数压缩曲线在海积软土本构中的应用[J].上海交通大学学报,2016,50(11): 1706-1711.DOI:10.16183/j.cnki.jsjtu.2016.11.008.
Liu P,Ding W Q.Application of bi-logarithmic compression curves in modelling of marine soft soil[J].Journal of Shanghai Jiaotong University,2016,50(11): 1706-1711.DOI:10.16183/j.cnki.jsjtu.2016.11.008. (in Chinese)
[23] Zamani A,Montoya B M.Undrained behavior of silty soil improved with microbial induced cementation[C]// Proceeding of the International Conference on Earthquake Geotechnical Engineering.Christchurch,New Zealand,2015: 1-9.
[24] Feng K,Montoya B M.Behavior of bio-mediated soil in k0 loading[C]//Geo-Shanghai International Conference 2014.Shanghai,China,2014:1-10.DOI:10.1061/9780784413456.001.
[25] Lin H,Suleiman M T,Brown D G,et al.Mechanical behavior of sands treated by microbially induced carbonate precipitation[J].Journal of Geotechnical and Geoenvironmental Engineering,2016,142(2): 04015066.DOI:10.1061/(asce)gt.1943-5606.0001383.
[26] Feng K,Montoya B M.Influence of confinement and cementation level on the behavior of microbial-induced calcite precipitated sands under monotonic drained loading[J].Journal of Geotechnical and Geoenvironmental Engineering,2016,142(1): 04015057.DOI:10.1061/(asce)gt.1943-5606.0001379.

相似文献/References:

[1]沈玉华,谢安建.珍珠中碳酸钙与有机基质之间相互作用的研究[J].东南大学学报(自然科学版),1998,28(6):182.[doi:10.3969/j.issn.1001-0505.1998.06.036]
 Shen Yuhua,Xie Anjian.Interactions between Calcium Carbonate and Organic Matrix in Pearls[J].Journal of Southeast University (Natural Science Edition),1998,28(4):182.[doi:10.3969/j.issn.1001-0505.1998.06.036]
[2]章春梅.碳酸钙对水泥熟料矿物水化及显微结构特征的影响[J].东南大学学报(自然科学版),1988,18(1):114.[doi:10.3969/j.issn.1001-0505.1988.01.013]
 Zhang Chunmei (Department of Civil Engineering).Influence of Calcium Carbonate on Hydration and Microstructural Characteristics of Cement Clinker Minerals[J].Journal of Southeast University (Natural Science Edition),1988,18(4):114.[doi:10.3969/j.issn.1001-0505.1988.01.013]

备注/Memo

备注/Memo:
收稿日期: 2018-12-13.
作者简介: 刘鹏(1985—),男,博士,讲师, Liupengreal@sina.com.
基金项目: 国家自然科学基金资助项目(51809139,51578293).
引用本文: 刘鹏,邵光辉,黄容聘.微生物沉积碳酸钙胶结砂土力学特性及本构模型[J].东南大学学报(自然科学版),2019,49(4):720-726. DOI:10.3969/j.issn.1001-0505.2019.04.015.
更新日期/Last Update: 2019-07-20