[1]达波,余红发,麻海燕,等.C60全珊瑚海水钢筋混凝土梁的抗弯性能研究[J].东南大学学报(自然科学版),2019,49(4):727-735.[doi:10.3969/j.issn.1001-0505.2019.04.016]
 Da Bo,Yu Hongfa,Ma Haiyan,et al.Flexural behavior of C60 coral aggregate reinforced concrete beam[J].Journal of Southeast University (Natural Science Edition),2019,49(4):727-735.[doi:10.3969/j.issn.1001-0505.2019.04.016]
点击复制

C60全珊瑚海水钢筋混凝土梁的抗弯性能研究()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
49
期数:
2019年第4期
页码:
727-735
栏目:
材料科学与工程
出版日期:
2019-07-20

文章信息/Info

Title:
Flexural behavior of C60 coral aggregate reinforced concrete beam
作者:
达波1余红发1麻海燕1糜人杰2吴彰钰1
1南京航空航天大学土木工程系, 南京 210016; 2东南大学材料科学与工程学院, 南京 211189
Author(s):
Da Bo1 Yu Hongfa1 Ma Haiyan1 Mi Renjie2 Wu Zhangyu1
1 Department of Civil Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
2 School of Materials Science and Engineering, Southeast University, Nanjing 211189, China
关键词:
全珊瑚海水钢筋混凝土梁 抗弯性能 钢筋种类 钢筋锈蚀 计算模型
Keywords:
coral aggregate reinforced concrete beam flexural behavior steel type steel corrosion calculation model
分类号:
TU528
DOI:
10.3969/j.issn.1001-0505.2019.04.016
摘要:
通过对不同种类钢筋的全珊瑚海水钢筋混凝土梁(CARCB)进行正截面抗弯性能试验,研究了CARCB的裂缝发展、破坏形态、跨中变形及抗弯承载能力,建立了弯矩-跨中挠度、荷载-纵向受拉钢筋应变、荷载-最大裂缝宽度的关系,提出了适用于CARCB抗弯承载力的计算模型.结果表明:随着钢筋强度的提高,CARCB的开裂弯矩和极限弯矩均逐渐增大,裂缝宽度扩展逐渐减慢,能有效抑制裂缝的发展.CARCB的裂缝宽度均随着荷载的增长而增大,在加载初期,裂缝宽度增长缓慢,当接近极限荷载时,裂缝宽度迅速增大,最终导致梁破坏.采用有机新涂层钢筋,能有效抑制珊瑚混凝土结构中钢筋发生锈蚀,从而延长其有效服役寿命.综合考虑钢筋锈蚀引起钢筋截面损失和钢筋屈服强度降低的影响,提出了更加合理的CARCB抗弯承载力的计算模型.
Abstract:
The flexural behavior of coral aggregate reinforced concrete beam(CARCB)with different types of reinforcement was tested, and the crack development, the failure mode, the midspan deflection and the flexural capacity were studied. The relationships of bending moment-midspan deflection, load-longitudinal tensile reinforcement strain and load-maximum crack width were established, and a calculation model for the flexural capacity of CARCB was suggested. The results show that with the increase of the reinforcement strength, the crack bending moment and the ultimate bending moment are increased, and the extension of the crack width(w)gradually slows down, inhibiting the development of cracks. With the increase of the load, w will increase. At the beginning of the loading, the w increases slowly, and then increases rapidly when the load reaches the ultimate load, leading to beam failure. The application of new organic coated steel in the CAC structure is suggested to effectively inhibit reinforcement corrosion. A more reasonable calculation model for the flexural capacity of CARCB is proposed by considering the loss the steel section and the decrease of the steel yield strength due to the steel corrosion.

参考文献/References:

[1] Angst U, Elsener B, Larsen C K, et al. Critical chloride content in reinforced concrete: A review[J]. Cement and Concrete Research, 2009, 39(12): 1122-1138. DOI:10.1016/j.cemconres.2009.08.006.
[2] Song H W, Lee C H, Ann K Y. Factors influencing chloride transport in concrete structures exposed to marine environments[J]. Cement and Concrete Composites, 2008, 30(2): 113-121. DOI:10.1016/j.cemconcomp.2007.09.005.
[3] 金伟良, 陈驹, 吴金海, 等. 海洋环境侵蚀作用下混凝土梁抗弯性能试验研究[J]. 浙江大学学报(工学版), 2004, 38(5): 603-609. DOI:10.3785/j.issn.1008-973X.2004.05.018.
Jin W L, Chen J, Wu J H, et al. Experimental study on flexural capacity of reinforced concrete beams in marine environment[J]. Journal of Zhejiang University(Engineering Science), 2004, 38(5): 603-609. DOI:10.3785/j.issn.1008-973X.2004.05.018. (in Chinese)
[4] Da B, Yu H F, Ma H Y, et al.Chloride diffusion study of coral concrete in a marine environment[J]. Construction and Building Materials, 2016, 123: 47-58. DOI:10.1016/j.conbuildmat.2016.06.135.
[5] 达波, 余红发, 麻海燕, 等. 南海海域珊瑚混凝土结构的耐久性影响因素[J]. 硅酸盐学报, 2016, 44(2): 253-260. DOI:10.14062/j.issn.0454-5648.2016.02.11.
Da B, Yu H F, Ma H Y, et al. Factors influencing durability of coral concrete structure in the South China Sea[J]. Journal of the Chinese Ceramic Society, 2016, 44(2): 253-260. DOI:10.14062/j.issn.0454-5648.2016.02.11. (in Chinese)
[6] 张伟平, 王晓刚, 顾祥林. 碳纤维布加固锈蚀钢筋混凝土梁抗弯性能研究[J]. 土木工程学报, 2010, 43(6): 34-41. DOI:10.15951/j.tmgcxb.2010.06.008.
Zhang W P, Wang X G, Gu X L. Flexural behavior of corroded reinforced concrete beams strengthened with carbon fiber composite sheets[J]. China Civil Engineering Journal, 2010, 43(6): 34-41. DOI:10.15951/j.tmgcxb.2010.06.008. (in Chinese)
[7] 刘沐宇, 李鸥, 丁庆军, 等. 高强轻集料钢筋混凝土梁抗弯性能试验[J]. 华中科技大学学报(自然科学版), 2006, 34(10): 100-103. DOI:10.3321/j.issn:1671-4512.2006.10.031.
Liu M Y, Li O, Ding Q J, et al. Flexural performance of reinforced high-strength lightweight concrete beams[J]. Journal of Huazhong University of Science and Technology(Nature Science), 2006, 34(10): 100-103. DOI:10.3321/j.issn:1671-4512.2006.10.031. (in Chinese)
[8] 季昌良, 翟爱良, 翟文举, 等. 再生砖粗骨料混凝土梁抗弯性能试验研究[J]. 水利水运工程学报, 2012(6): 59-64. DOI:10.3969/j.issn.1009-640X.2012.06.010.
Ji C L, Zhai A L, Zhai W J, et al. Experimental study on flexural performance of recycled brick coarse aggregate concrete beam[J]. Hydro-Science and Engineering, 2012(6): 59-64. DOI:10.3969/j.issn.1009-640X.2012.06.010. (in Chinese)
[9] Howdyshell P A. The use of coral as an aggregate for Portland cement concrete structures[R].Champaign,USA:Army Construction Engineering Research Laboratory, 1974.
[10] Rick A E. Coral concrete at bikini atoll[J].Concrete International, 1991, 1: 19-24.
[11] 张文. 配筋珊瑚混凝土构件试验研究[D]. 南京: 河海大学, 1995.
  Zhang W. Experimental study on reinforced coral aggregate concrete component[D]. Nanjing: Hohai University, 1995.(in Chinese)
[12] Da B, Yu H F, Ma H Y, et al.Experimental investigation of whole stress-strain curves of coral concrete[J]. Construction and Building Materials, 2016, 122: 81-89. DOI:10.1016/j.conbuildmat.2016.06.064.
[13] 达波, 余红发, 麻海燕, 等. 全珊瑚海水混凝土单轴受压应力-应变全曲线试验研究[J]. 建筑结构学报, 2017, 38(1): 144-151. DOI:10.14006/j.jzjgxb.2017.01.016.
Da B, Yu H F, Ma H Y, et al. Experimental research on whole stress-strain curves of coral aggregate seawater concrete under uniaxial compression[J]. Journal of Building Structures, 2017, 38(1): 144-151. DOI:10.14006/j.jzjgxb.2017.01.016. (in Chinese)
[14] 袁迎曙, 贾福萍, 蔡跃. 锈蚀钢筋混凝土梁的结构性能退化模型[J]. 土木工程学报, 2001, 34(3): 47-52, 96. DOI:10.3321/j.issn:1000-131X.2001.03.009.
Yuan Y S, Jia F P, Cai Y. The structural behavior deterioration model for corroded reinforced concrete beams[J]. China Civil Engineering Journal, 2001, 34(3): 47-52, 96. DOI:10.3321/j.issn:1000-131X.2001.03.009. (in Chinese)
[15] Da B, Yu H F, Ma H Y, et al.Reinforcement corrosion research based on the linear polarization resistance method for coral aggregate seawater concrete in a Marine environment[J]. Anti-Corrosion Methods and Materials, 2018, 65(5): 458-470. DOI:10.1108/acmm-03-2018-1911.
[16] Yu H F, Da B, Ma H Y, et al. Durability of concrete structures in tropical atoll environment[J]. Ocean Engineering, 2017, 135: 1-10. DOI:10.1016/j.oceaneng.2017.02.020.
[17] 达波, 余红发, 麻海燕, 等. 热带岛礁环境下全珊瑚海水混凝土结构服役寿命的可靠性[J]. 硅酸盐学报, 2018, 46(11): 1613-1621. DOI:10.14062/j.issn.0454-5648.2018.11.16.
Da B, Yu H F, Ma H Y, et al. Reliability of service life of coral aggregate seawater concrete structure in tropic island reef environment[J]. Journal of the Chinese Ceramic Society, 2018, 46(11): 1613-1621. DOI:10.14062/j.issn.0454-5648.2018.11.16. (in Chinese)
[18] 达波, 余红发, 麻海燕, 等. 全珊瑚海水混凝土的表面自由氯离子浓度和表观氯离子扩散系数[J]. 东南大学学报(自然科学版), 2016, 46(5): 1093-1097. DOI:10.3969/j.issn.1001-0505.2016.05.033.
Da B, Yu H F, Ma H Y, et al. Surface free chloride concentration and apparent chloride diffusion coefficient of coral seawater concrete[J]. Journal of Southeast University(Natural Science Edition), 2016, 46(5): 1093-1097. DOI:10.3969/j.issn.1001-0505.2016.05.033. (in Chinese)
[19] 张伟平, 张誉. 锈胀开裂后钢筋混凝土粘结滑移本构关系研究[J]. 土木工程学报, 2001, 34(5): 40-44. DOI:10.3321/j.issn:1000-131X.2001.05.008.
Zhang W P, Zhang Y. Bond-slip relationship between corroded steel bars and concrete[J]. China Civil Engineering Journal, 2001, 34(5): 40-44. DOI:10.3321/j.issn:1000-131X.2001.05.008. (in Chinese)
[20] 袁迎曙, 贾福萍, 蔡跃. 锈蚀钢筋的力学性能退化研究[J]. 工业建筑, 2000, 30(1): 43-46. DOI:10.3321/j.issn:1000-8993.2000.01.012.
Yuan Y S, Jia F P, Cai Y. Deterioration of mechanical behavior of corroded steel bar[J]. Industrial Construction, 2000, 30(1): 43-46. DOI:10.3321/j.issn:1000-8993.2000.01.012. (in Chinese)
[21] 王雪慧, 钟铁毅. 混凝土中锈蚀钢筋截面损失率与重量损失率的关系[J]. 建材技术与应用, 2005(1): 4-6. DOI:10.3969/j.issn.1009-9441.2005.01.002.
Wang X H, Zhong T Y. Relation between the loss coefficient of the corroded rebar’s cross-section in concrete and that of its weight[J]. Research & Application of Building Materials, 2005(1): 4-6. DOI:10.3969/j.issn.1009-9441.2005.01.002. (in Chinese)
[22] 中华人民共和国建设部. JGJ 12―2006 轻骨料混凝土结构技术规程[S]. 北京: 中国建筑工业出版社, 2006.
[23] 中华人民共和国建设部. GB 50010―2010 混凝土结构设计规范[S]. 北京: 中国建筑工业出版社, 2010.

备注/Memo

备注/Memo:
收稿日期: 2018-11-29.
作者简介: 达波(1988—),男,博士;余红发(联系人),男,博士,教授,博士生导师,yuhongfa@nuaa.edu.cn.
基金项目: 国家自然科学基金资助项目(51508272, 51678304, 51878350, 11832013)、江苏省自然科学基金资助项目(BK20180433)、中国博士后科学基金资助项目(2018M630558).
引用本文: 达波,余红发,麻海燕,等.C60全珊瑚海水钢筋混凝土梁的抗弯性能研究[J].东南大学学报(自然科学版),2019,49(4):727-735. DOI:10.3969/j.issn.1001-0505.2019.04.016.
更新日期/Last Update: 2019-07-20