[1]蒋丰韬,项楠,倪中华.聚合物薄膜惯性微流控芯片研制及直流道内粒子聚焦特性[J].东南大学学报(自然科学版),2019,49(4):736-741.[doi:10.3969/j.issn.1001-0505.2019.04.017]
 Jiang Fengtao,Xiang Nan,Ni Zhonghua.Design and fabrication of polymer film-based inertial microfluidic chips and particles focusing mechanisms in straight channels[J].Journal of Southeast University (Natural Science Edition),2019,49(4):736-741.[doi:10.3969/j.issn.1001-0505.2019.04.017]
点击复制

聚合物薄膜惯性微流控芯片研制及直流道内粒子聚焦特性()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
49
期数:
2019年第4期
页码:
736-741
栏目:
电路与系统
出版日期:
2019-07-20

文章信息/Info

Title:
Design and fabrication of polymer film-based inertial microfluidic chips and particles focusing mechanisms in straight channels
作者:
蒋丰韬项楠倪中华
东南大学江苏省微纳生物医疗器械设计与制造重点实验室, 南京 211189; 东南大学机械工程学院, 南京 211189
Author(s):
Jiang Fengtao Xiang Nan Ni Zhonghua
Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing 211189, China
School of Mechanical Engineering, Southeast University, Nanjing 211189, China
关键词:
惯性微流控芯片 直流道 惯性聚焦 聚合物薄膜
Keywords:
inertial microfluidic chip straight microchannel inertial focusing polymer film
分类号:
TN492
DOI:
10.3969/j.issn.1001-0505.2019.04.017
摘要:
提出一种低成本、可一次性使用的聚合物薄膜惯性微流控芯片,并探索了样品输入流量、粒子尺寸及流道截面尺寸对直流道内粒子惯性聚焦效果的影响机制.该聚合物薄膜芯片采用激光切割和热塑封的新型工艺实现快速、批量化制造.随着样品输入流量的增加,粒子聚焦效果逐渐优化,并在达到峰值后,随流量进一步增加而下滑;不同尺寸粒子在相同结构流道内的表现差异显著,粒子直径越大,其在惯性直流道内的聚焦效果越好;不同流道截面宽度的实验结果显示,截面宽度较小的流道结构更利于实现粒子的聚焦.研制的新型直流道聚合物薄膜惯性微流控芯片具有实现细胞等生物医学样品高效预处理的应用前景.
Abstract:
A low-cost polymer-film inertial microfluidic chip with a simple straight channel was proposed. The effects of sample flow rate, particle size and channel cross-sectional dimension on particle focusing were systematically explored. By using the method of laser cutting and thermoplastic sealing, the microfluidic chips can be quickly and massively produced. The experimental results show that the particle focusing performance gradually enhances with increasing sample flow rate and then deteriorates after reaching the peak point. There are significant differences in the performance of particles focusing when particle sizes are different. The large particles are found to have better focusing performance than the small particles. The experimental results of microchannel with different cross-sectional widths show that smaller width channel is more beneficial for particle focusing. The proposed inertial microfluidic chip can provide the prospect of efficient pretreatment for biomedical applications.

参考文献/References:

[1] Zhao Z,Yang Y,Zeng Y,et al.A microfluidic ExoSearch chip for multiplexed exosome detection towards blood-based ovarian cancer diagnosis[J].Lab on a Chip,2016,16(3):489-496.DOI:10.1039/c5lc01117e.
[2] Liang L G,Kong M Q,Zhou S,et al.An integrated double-filtration microfluidic device for isolation,enrichment and quantification of urinary extracellular vesicles for detection of bladder cancer[J].Scientific Reports,2017,7:46224.DOI:10.1038/srep46224.
[3] Xia Y Y,Si J,Li Z Y.Fabrication techniques for microfluidic paper-based analytical devices and their applications for biological testing:A review[J].Biosensors and Bioelectronics,2016,77:774-789.DOI:10.1016/j.bios.2015.10.032.
[4] Song H J,Rosano J M,Wang Y,et al.Continuous-flow sorting of stem cells and differentiation products based on dielectrophoresis[J].Lab on a Chip,2015,15(5):1320-1328.DOI:10.1039/c4lc01253d.
[5] Park M H,Reátegui E,Li W,et al.Enhanced isolation and release of circulating tumor cells using nanoparticle binding and ligand exchange in a microfluidic chip[J].Journal of the American Chemical Society,2017,139(7):2741-2749.DOI:10.1021/jacs.6b12236.
[6] Chong Z Z,Tan S H,Gañán-Calvo A M,et al.Active droplet generation in microfluidics[J].Lab on a Chip,2016,16(1):35-58.DOI:10.1039/c5lc01012h.
[7] Au S H,Edd J,Stoddard A E,et al.Microfluidic isolation of circulating tumor cell clusters by size and asymmetry[J].Scientific Reports,2017,7:2433.DOI:10.1038/s41598-017-01150-3.
[8] di Carlo D.Inertial microfluidics[J].Lab on a Chip,2009,9(21):3038.DOI:10.1039/b912547g.
[9] Segré G,Silberberg A.Radial particle displacements in poiseuille flow of suspensions[J].Nature,1961,189(4760): 209-210.DOI:10.1038/189209a0.
[10] Kuntaegowdanahalli S S,Bhagat A A S,Kumar G,et al.Inertial microfluidics for continuous particle separation in spiral microchannels[J].Lab on a Chip,2009,9(20):2973-2980.DOI:10.1039/b908271a.
[11] Zhang X J,Zhu Z X,Xiang N,et al.Automated microfluidic instrument for label-free and high-throughput cell separation[J].Analytical Chemistry,2018,90(6):4212-4220.DOI:10.1021/acs.analchem.8b00539.
[12] Xiang N,Shi Z G,Tang W L,et al.Improved understanding of particle migration modes in spiral inertial microfluidic devices[J].RSC Advances,2015,5(94):77264-77273.DOI:10.1039/c5ra13292d.
[13] Jiang D,Tang W L,Xiang N,et al.Numerical simulation of particle focusing in a symmetrical serpentine microchannel[J].RSC Advances,2016,6(62):57647-57657.DOI:10.1039/c6ra08374a.
[14] Tang W L,Tang D Z,Ni Z H,et al.Microfluidic impedance cytometer with inertial focusing and liquid electrodes for high-throughput cell counting and discrimination[J].Analytical Chemistry,2017,89(5):3154-3161.DOI:10.1021/acs.analchem.6b04959.
[15] Tabeling P,Troian S M.Introduction to microfluidics[J].Physics Today,2006,59(12):58-60.
[16] Squires T M,Quake S R.Microfluidics:Fluid physics at the nanoliter scale[J].Reviews of Modern Physics,2005,77(3):977.DOI:10.1103/revmodphys.77.977.
[17] Matas J P,Morris J F,Guazzelli É.Inertial migration of rigid spherical particles in Poiseuille flow[J].Journal of Fluid Mechanics,2004,515:171-195.DOI:10.1017/s0022112004000254.
[18] Hur S C,Tse H T K,di Carlo D.Sheathless inertial cell ordering for extreme throughput flow cytometry[J].Lab Chip,2010,10(3):274-280.DOI:10.1039/b919495a.
[19] Bhagat A A S,Kuntaegowdanahalli S S,Papautsky I.Inertial microfluidics for continuous particle filtration and extraction[J].Microfluidics and Nanofluidics,2009,7(2):217-226.DOI:10.1007/s10404-008-0377-2.
[20] Zeng L Y,Balachandar S,Fischer P.Wall-induced forces on a rigid sphere at finite Reynolds number[J].Journal of Fluid Mechanics,2005,536:1-25.DOI:10.1017/s0022112005004738.
[21] Gossett D R,Tse H T K,Dudani J S,et al.Inertial microfluidics:Inertial manipulation and transfer of microparticles across laminar fluid streams[J].Small,2012,8(17):2765.DOI:10.1002/smll.201290094.

备注/Memo

备注/Memo:
收稿日期: 2018-11-27.
作者简介: 蒋丰韬(1996─),男,硕士生;项楠(联系人),男,博士,副教授,nan.xiang@seu.edu.cn.
基金项目: 国家自然科学基金资助项目(81727801,51875103,51775111)、江苏省自然科学基金资助项目(BK20150606)、江苏省“六大人才高峰”高层次人才资助项目(SWYY-005).
引用本文: 蒋丰韬,项楠,倪中华.聚合物薄膜惯性微流控芯片研制及直流道内粒子聚焦特性[J].东南大学学报(自然科学版),2019,49(4):736-741. DOI:10.3969/j.issn.1001-0505.2019.04.017.
更新日期/Last Update: 2019-07-20