[1]陈健,段伦博,卞若愚,等.钙基中空微球的碳酸化性能及其动力学分析[J].东南大学学报(自然科学版),2019,49(4):757-763.[doi:10.3969/j.issn.1001-0505.2019.04.020]
 Chen Jian,Duan Lunbo,Bian Ruoyu,et al.Analysis of carbonation and kinetic performance of CaO hollow microspheres[J].Journal of Southeast University (Natural Science Edition),2019,49(4):757-763.[doi:10.3969/j.issn.1001-0505.2019.04.020]
点击复制

钙基中空微球的碳酸化性能及其动力学分析()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
49
期数:
2019年第4期
页码:
757-763
栏目:
能源与动力工程
出版日期:
2019-07-20

文章信息/Info

Title:
Analysis of carbonation and kinetic performance of CaO hollow microspheres
作者:
陈健段伦博卞若愚谭茗月石田卢欲晓赵长遂
东南大学能源热转换及其过程测控教育部重点实验室, 南京 210096; 东南大学能源与环境学院, 南京 210096
Author(s):
Chen Jian Duan Lunbo Bian Ruoyu Tan Mingyue Shi Tian Lu Yuxiao Zhao Changsui
Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, Southeast University, Nanjing 210096, China
School of Energy and Environment, Southeast University, Nanjing 210096, China
关键词:
模板法 中空材料 钙循环 二氧化碳 动力学
Keywords:
templating method hollow material calcium looping CO2 kinetics
分类号:
TK224.1
DOI:
10.3969/j.issn.1001-0505.2019.04.020
摘要:
采用模板法制备了钙基中空微球,用于实现高效CO2捕捉.借助热重分析仪在较为真实条件下研究了钙基中空微球外径、碳酸化温度对其CO2捕集性能的影响,并借助扫描电子显微镜(SEM)、透射电子显微镜(TEM)和氮吸附分析其微观结构.最后,利用缩核模型对钙基中空微球碳酸化反应中的化学反应控制阶段进行动力学分析.结果表明,中空结构可以显著提升钙基吸收剂的CO2捕集性能.性能最好的钙基中空微球的首次碳酸化转化率高达82.5%,相比于石灰石提升了30.7%.这是因为中空结构显著改善了孔隙结构,增大了比表面积和比孔容积.随着碳酸化温度的升高,钙基中空微球的CO2捕集性能呈现先上升后下降的趋势,在650 ℃时达到最大值,碳酸化转化率高达82.5%.动力学分析结果表明,中空结构可以加快化学反应控制阶段的反应速率,并延缓反应速率的衰减,同时还可以降低反应活化能,进而对碳酸化反应起着显著的提升作用.
Abstract:
The templating method was used to preparation of CaO hollow microspheres for enhancing CO2 capture performance. The effects of external diameter of CaO hollow microspheres and carbonation temperature on CO2 capture were investigated under a relative realistic condition via a thermogravimetric analyzer(TGA). The morphologies and microstructures of sorbents were characterized using scanning electron microscopy(SEM), transmission electron microscopy(TEM), and N2 adsorption measurement. Finally, a shrinking core model was employed to describe the chemical-reaction controlled stage of the carbonation process for CaO hollow microspheres. The results show the hollow structure can significantly enhance CO2 capture performance of CaO-based sorbents. The initial carbonation conversion of the best CaO hollow microspheres can reach 82.5%, exceeding the reference limestone by 30.7%. It is because the hollow structure improves the porosity of the sorbents, leading to an increase in both specific surface area and pore volume. Moreover, with the increase of the carbonation temperature, the CO2 capture performance of CaO hollow microspheres increases first, reaching a maximum carbonation conversion of 82.5% at 650 ℃, and then decreases. Furthermore, the kinetic analysis shows that the hollow structure can enhance the reaction rate of the chemical-reaction controlled stage, and slow down the decline in reaction rate. The hollow structure can also lower the activation energy. As a result, CaO hollow microspheres exhibit better CO2 capture performance.

参考文献/References:

[1] International Energy Agency. Global energy & CO2status Report—2018[R].International Energy Agency,2018.
[2] 石田, 陈健, 段伦博, 等. 溶液燃烧合成法制备自活化钙铜复合CO2吸收剂的性能[J]. 化工进展, 2018, 37(8): 3086-3091. DOI:10.16085/j.issn.1000-6613.2017-1817.
Shi T, Chen J, Duan L B, et al. CO2 capture performance of self-activated Ca/Cu composites prepared by solution combustion synthesis[J]. Chemical Industry and Engineering Progress, 2018, 37(8): 3086-3091. DOI:10.16085/j.issn.1000-6613.2017-1817. (in Chinese)
[3] 蔡宁生, 房凡, 李振山. 钙基吸收剂循环煅烧/碳酸化法捕集CO2的研究进展[J]. 中国电机工程学报, 2010, 30(26): 35-43. DOI:10.13334/j.0258-8013.pcsee.2010.26.002.
Cai N S, Fang F, Li Z S. Research and development on cyclic calcination/carbonation reaction with Ca-based sorbents to CO2 capture from flue gases[J]. Proceedings of the CSEE, 2010, 30(26): 35-43. DOI:10.13334/j.0258-8013.pcsee.2010.26.002. (in Chinese)
[4] Chen J, Duan L B, Donat F, et al. Self-activated, nanostructured composite for improved CaL-CLC technology[J].Chemical Engineering Journal, 2018, 351: 1038-1046. DOI:10.1016/j.cej.2018.06.176.
[5] Erans M, Manovic V, Anthony E J. Calcium looping sorbents for CO2 capture[J]. Applied Energy, 2016, 180: 722-742. DOI:10.1016/j.apenergy.2016.07.074.
[6] Su C L, Duan L B, Donat F, et al. From waste to high value utilization of spent bleaching clay in synthesizing high-performance calcium-based sorbent for CO2 capture[J]. Applied Energy, 2018, 210: 117-126. DOI:10.1016/j.apenergy.2017.10.104.
[7] 王春波, 周兴, 张斌, 等. 烧结对钙基吸收剂循环煅烧/碳酸化捕集CO2影响[J]. 中国电机工程学报, 2014, 34(35): 6271-6278. DOI:10.13334/j.0258-8013.pcsee.2014.35.003.
Wang C B, Zhou X, Zhang B, et al. Effect of sintering on the limestone calcination/carbonation looping cycle for CO2 capture[J]. Proceedings of the CSEE, 2014, 34(35): 6271-6278. DOI:10.13334/j.0258-8013.pcsee.2014.35.003. (in Chinese)
[8] Manovic V, Anthony E J. Lime-based sorbents for high-temperature CO2 capture: A review of sorbent modification methods[J]. International Journal of Environmental Research and Public Health, 2010, 7(8): 3129-3140. DOI:10.3390/ijerph7083129.
[9] Kierzkowska A M, Pacciani R, Müller C R. CaO-based CO2 sorbents: From fundamentals to the development of new, highly effective materials[J]. ChemSusChem, 2013, 6(7): 1130-1148. DOI:10.1002/cssc.201300178.
[10] Liu W Q, An H, Qin C L, et al. Performance enhancement of calcium oxide sorbents for cyclic CO2 capture: A review[J]. Energy & Fuels, 2012, 26(5): 2751-2767. DOI:10.1021/ef300220x.
[11] Chen J, Duan L B, Sun Z. Accurate control of cage-like CaO hollow microspheres for enhanced CO2 capture in calcium looping via a template-assisted synthesis approach[J]. Environmental Science & Technology, 2019, 53(4): 2249-2259. DOI:10.1021/acs.est.8b06138.
[12] 周绿山, 赖川, 王芬, 等. 多孔碳酸钙的制备及应用研究进展[J]. 化工进展, 2018, 37(1): 159-167. DOI:10.16085/j.issn.1000-6613.2017-0768.
Zhou L S, Lai C, Wang F, et al. Progress in fabrication and applications of porous calcium carbonate[J]. Chemical Industry and Engineering Progress, 2018, 37(1):159-167. DOI:10.16085/j.issn.1000-6613.2017-0768. (in Chinese)
[13] Naeem M A, Armutlulu A, Broda M, et al. The development of effective CaO-based CO2 sorbents via a sacrificial templating technique[J]. Faraday Discussions, 2016, 192: 85-95. DOI:10.1039/c6fd00042h.
[14] Ping H L, Wu S F. Preparation of cage-like nano-CaCO3 hollow spheres for enhanced CO2sorption[J]. RSC Advances, 2015, 5(80): 65052-65057. DOI:10.1039/c5ra12251a.
[15] Liu F Q, Li W H, Liu B C, et al. Synthesis, characterization, and high temperature CO2 capture of new CaO based hollow sphere sorbents[J]. Journal of Materials Chemistry A, 2013, 1(27): 8037-8044. DOI:10.1039/c3ta11369h.
[16] 孙荣岳, 叶江明, 陈凌海, 等. Cl含量对钙基吸收剂微观结构以及动力学性能的影响[J]. 化工进展, 2018, 37(9): 3629-3634. DOI:10.16085/j.issn.1000-6613.2017-2225.
Sun R Y, Ye J M, Chen L H, et al. Effect of Cl content on the microstructure and dynamic performance of calcium-based sorbent[J]. Chemical Industry and Engineering Progress, 2018, 37(9): 3629-3634. DOI:10.16085/j.issn.1000-6613.2017-2225. (in Chinese)
[17] 孙荣岳, 叶江明, 毕小龙, 等. 丙酸改性提高电石渣捕集CO2性能的动力学分析[J]. 化工进展, 2017, 36(6): 2325-2330. DOI:10.16085/j.issn.1000-6613.2017.06.051.
Sun R Y, Ye J M, Bi X L, et al. Kinetic analysis on CO2 capture performance of carbide slag modified by propionic acid[J]. Chemical Industry and Engineering Progress, 2017, 36(6): 2325-2330. DOI:10.16085/j.issn.1000-6613.2017.06.051. (in Chinese)
[18] Zhang Y, Gong X, Chen X L, et al. Performance of synthetic CaO-based sorbent pellets for CO2 capture and kinetic analysis[J]. Fuel, 2018, 232: 205-214. DOI:10.1016/j.fuel.2018.05.143.
[19] 余志健, 段伦博, 李小乐, 等. 机械成型水泥支撑钙基吸收剂脱碳活性及强度[J]. 化工进展, 2017, 36(6): 2222-2229. DOI:10.16085/j.issn.1000-6613.2017.06.036.
Yu Z J, Duan L B, Li L L, et al. CO2 capacity and strength of cement-supported Ca-sorbent pelletized by granulator[J]. Chemical Industry and Engineering Progress, 2017, 36(6): 2222-2229. DOI:10.16085/j.issn.1000-6613.2017.06.036. (in Chinese)
[20] 余志健, 段伦博, 苏成林, 等. 蒸汽活化水泥支撑钙基吸收剂活性及强度特性[J]. 化工学报, 2017, 68(4): 1637-1645. DOI:10.11949/j.issn.0438-1157.20161389.
Yu Z J, Duan L B, Su C L, et al. Reactivity and strength of cement-supported calcium sorbent reactivated by steam for CO2 capture[J]. CIESC Journal, 2017, 68(4): 1637-1645. DOI:10.11949/j.issn.0438-1157.20161389. (in Chinese)
[21] Sun P, Grace J R, Lim C J, et al. Determination of intrinsic rate constants of the CaO-CO2reaction[J]. Chemical Engineering Science, 2008, 63(1): 47-56. DOI:10.1016/j.ces.2007.08.055.
[22] Symonds R T, Lu D Y, MacChi A, et al. CO2 capture from syngas via cyclic carbonation/calcination for a naturally occurring limestone: Modelling and bench-scale testing[J]. Chemical Engineering Science, 2009, 64(15): 3536-3543. DOI:10.1016/j.ces.2009.04.043.
[23] Naeem M A, Armutlulu A, Imtiaz Q, et al. Optimization of the structural characteristics of CaO and its effective stabilization yield high-capacity CO2 sorbents[J]. Nature Communications, 2018, 9: 2408. DOI:10.1038/s41467-018-04794-5.
[24] Yin J J, Qin C L, Feng B, et al. Calcium looping for CO2 capture at a constant high temperature[J]. Energy & Fuels, 2014, 28(1): 307-318. DOI:10.1021/ef401399c.
[25] Li Y J, Liu H L, Sun R Y, et al. Thermal analysis of cyclic carbonation behavior of CaO derived from carbide slag at high temperature[J].Journal of Thermal Analysis and Calorimetry, 2012, 110(2): 685-694. DOI:10.1007/s10973-011-1901-2.

备注/Memo

备注/Memo:
收稿日期: 2018-12-03.
作者简介: 陈健(1992—),男,博士生;段伦博(联系人),男,博士,教授,博士生导师,duanlunbo@seu.edu.cn.
基金项目: 国家重点研发计划中美清洁能源联合研究中心资助项目(2016YFE0102500-06-01)、东南大学优秀博士学位论文培育基金资助项目(YBPY1902)、国家留学基金资助项目(201806090031).
引用本文: 陈健,段伦博,卞若愚,等.钙基中空微球的碳酸化性能及其动力学分析[J].东南大学学报(自然科学版),2019,49(4):757-763. DOI:10.3969/j.issn.1001-0505.2019.04.020.
更新日期/Last Update: 2019-07-20