[1]乔宗良,汤有飞,王兴超,等.CO2羽流地热系统开采特性数值模拟及预测模型[J].东南大学学报(自然科学版),2019,49(4):764-772.[doi:10.3969/j.issn.1001-0505.2019.04.021]
 Qiao Zongliang Tang Youfei Wang Xingchao Pan Chunjian Si Fengqi Zhao Lingling.Numerical simulation and predictive model of mining characteristics of CO2 plume geothermal system[J].Journal of Southeast University (Natural Science Edition),2019,49(4):764-772.[doi:10.3969/j.issn.1001-0505.2019.04.021]
点击复制

CO2羽流地热系统开采特性数值模拟及预测模型()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
49
期数:
2019年第4期
页码:
764-772
栏目:
数学、物理学、力学
出版日期:
2019-07-20

文章信息/Info

Title:
Numerical simulation and predictive model of mining characteristics of CO2 plume geothermal system
作者:
乔宗良1汤有飞1王兴超2潘春健2司风琪1赵伶玲1
1东南大学能源热转换及其过程测控教育部重点实验室, 南京 210096; 2Energy Research Center, Lehigh University, Bethlehem 18015, USA
Author(s):
Qiao Zongliang1 Tang Youfei1 Wang Xingchao2 Pan Chunjian2 Si Fengqi1 Zhao Lingling1
1Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, Southeast University, Nanjing 210096, China
2Energy Research Center, Lehigh University, Bethlehem 18015, USA
关键词:
超临界CO2 CO2羽流地热系统 耦合模型 数值模拟 开采特性 预测模型
Keywords:
supercritical carbon dioxide CO2 plume geothermal system coupled model numerical simulation mining characteristics prediction model
分类号:
O325;TK79
DOI:
10.3969/j.issn.1001-0505.2019.04.021
摘要:
为了研究超临界CO2羽流地热系统的采热特性,建立了耦合井筒-储层的数学模型,同时考虑井筒对流动的影响以及岩层的热量补偿作用,通过T2Well/ECO2N软件分析了开采周期内产出流量、热储层压力和温度随时间的变化情况,并以数值计算为基础建立了开采特性预测模型.结果表明:CO2产量在开采初期较小,连续注采10年后流量可达稳定状态,在羽流地热产出CO2时即存在热虹吸效应,出口井温度30年内基本保持恒定;通过单因素分析,研究注入参数对开采特性的影响,其中CO2注入流量对注入井口压力、出口井温度、出口井流量都有显著影响,井间距主要影响出口井温度和出口井压力;基于响应曲面法建立的开采特性预测模型可以更加直观地反映参数对开采特性的耦合影响,并可为地热发电系统的优化设计提供依据.
Abstract:
A fully coupled wellbore and reservoir model of the CO2 plume geothermal system was built for studying the characteristics of geothermal heat extraction using CO2 captured from the fossil-fired power plant, and the effects of the wellbore on flow and the thermal compensation of the rock layer are considered. The T2Well/ECO2N software was used to numerically simulate the changes of temperature, pressure and mass flow rate profiles of the geothermal heat mining system over time. Based on the numerical simulation results, a mining characteristic prediction model was developed. The results show that the initial production of CO2 is relatively small, and the flow rate can reach a steady state after 10 years of continuous injection and production. The thermosiphon effect occurs with CO2 production, and the outlet well temperature remains basically constant within 30 years. The wellhead temperature of the production well remains constant for 30 years.The single factor analysis was performed to study the influence degree of each influencing factor on the mining index. The CO2 injection flow rate has great influence on the injection wellhead pressure, the production wellhead temperature and flow rate. The distance between the injection well and the production well significantly affects the production wellhead temperature and pressure. The response surface method was used to create the characteristic prediction model, which can reflect the coupling effects of parameters on mining characteristics more intuitively. In addition, the mining characteristic prediction model can provide a basis for the optimization design for geothermal power generation systems.

参考文献/References:

[1] 林宗虎.中国燃煤锅炉节能减排技术近况及展望[J].西安交通大学学报,2016,50(12):1-5.DOI:10.7652/xjtuxb201612001.
Lin Z H.Recent situation and prospect of technologies for energy saving and emission reduction of coal-fired boilers in China[J].Journal of Xi’an Jiaotong University,2016,50(12):1-5.DOI:10.7652/xjtuxb201612001. (in Chinese)
[2] Jiang S Q,Chen Z,Shan L,et al.Committed CO2 emissions of China’s coal-fired power generators from 1993 to 2013[J].Energy Policy,2017,104:295-302.DOI:10.1016/j.enpol.2017.02.002.
[3] 杨倩鹏,林伟杰,王月明,等.火力发电产业发展与前沿技术路线[J].中国电机工程学报,2017,37(13):3787-3794.DOI:10.13334/j.0258-8013.pcsee.170187.
Yang Q P,Lin W J,Wang Y M,et al.Industry development and frontier technology roadmap of thermal power generation[J].Proceedings of the CSEE,2017,37(13):3787-3794.DOI:10.13334/j.0258-8013.pcsee.170187. (in Chinese)
[4] Rahman F A,Aziz M M A,Saidur R,et al.Pollution to solution:Capture and sequestration of carbon dioxide(CO2)and its utilization as a renewable energy source for a sustainable future[J].Renewable and Sustainable Energy Reviews,2017,71:112-126.DOI:10.1016/j.rser.2017.01.011.
[5] Leung D Y C,Caramanna G,Maroto-Valer M M.An overview of current status of carbon dioxide capture and storage technologies[J].Renewable and Sustainable Energy Reviews,2014,39:426-443.DOI:10.1016/j.rser.2014.07.093.
[6] 周任军,肖钧文,唐夏菲,等.电转气消纳新能源与碳捕集电厂碳利用的协调优化[J].电力自动化设备,2018,38(7):61-67.DOI:10.16081/j.issn.1006-6047.2018.07.008.
Zhou R J,Xiao J W,Tang X F,et al.Coordinated optimization of carbon utilization between power-to-gas renewable energy accommodation and carbon capture power plant[J].Electric Power Automation Equipment,2018,38(7):61-67.DOI:10.16081/j.issn.1006-6047.2018.07.008. (in Chinese)
[7] Jiang P X,Li X L,Xu R N,et al.Thermal modeling of CO2 in the injection well and reservoir at the Ordos CCS demonstration project,China[J].International Journal of Greenhouse Gas Control,2014,23:135-146.DOI:10.1016/j.ijggc.2014.01.011.
[8] Zhang L,Ezekiel J,Li D X,et al.Potential assessment of CO2 injection for heat mining and geological storage in geothermal reservoirs of China[J].Applied Energy,2014,122:237-246.DOI:10.1016/j.apenergy.2014.02.027.
[9] Faizal M,Bouazza A,Singh R M.Heat transfer enhancement of geothermal energy piles[J].Renewable and Sustainable Energy Reviews,2016,57:16-33.DOI:10.1016/j.rser.2015.12.065.
[10] Zhang L,Li X,Zhang Y,et al.CO2 injection for geothermal development associated with EGR and geological storage in depleted high-temperature gas reservoirs[J].Energy,2017,123:139-148.DOI:10.1016/j.energy.2017.01.135.
[11] Levy E K,Wang X C,Pan C J,et al.Use of hot supercritical CO2 produced from a geothermal reservoir to generate electric power in a gas turbine power generation system[J].Journal of CO2 Utilization2,2018,23:20-28.DOI:10.1016/j.jcou.2017.11.001.
[12] Pandey S N,Vishal V,Chaudhuri A.Geothermal reservoir modeling in a coupled thermo-hydro-mechanical-chemical approach:A review[J].Earth-Science Reviews,2018,185:1157-1169.DOI:10.1016/j.earscirev.2018.09.004.
[13] Zhang L, Ezekiel J, Li D X, et al. Potential assessment of CO2 injection for heat mining and geological storage in geothermal reservoirs of China[J]. Applied Energy, 2014, 122:237-246. DOI:10.1016/j.apenergy.2014.02.027.
[14] 李静岩,刘中良,周宇,等.热储上下岩层热补偿作用对CO2羽流地热系统性能的影响[J].化工学报,2017,68(12):4526-4536.DOI:10.11949/j.issn.0438-1157.20170413.
Li J Y,Liu Z L,Zhou Y,et al.Influence of thermal compensation of geothermal reservoir rock formation on CO2 plume geothermal system performance[J].CIESC Jorunal,2017,68(12):4526-4536.DOI:10.11949/j.issn.0438-1157.20170413. (in Chinese)
[15] 朱慧星,许天福,封官宏,等.孔渗非均质性对CO2羽流地热系统功能影响数值模拟研究[J].太阳能学报,2017,38(7):1814-1821.
  Zhu H X,Xu T F,Feng G H,et al.Numerical modeling of the performance of the CO2-plume geothermal system in a permeability and porosity heterogeneous reservoir[J].Acta Energiae Solaris Sinica,2017,38(7):1814-1821.(in Chinese)
[16] Hadgu T,Zimmerman R W,Bodvarsson G S.Coupled reservoir-wellbore simulation of geothermal reservoir behavior[J].Geothermics,1995,24(2):145-166.DOI:10.1016/0375-6505(95)91145-a.
[17] Pan L H, Oldenburg C M.T2Well—An integrated wellbore-reservoir simulator[J].Computers & Geosciences,2014,65:46-55.DOI:10.1016/j.cageo.2013.06.005.
[18] Hemmingsen C S,Glimberg S L,Quadrio N,et al.Multiphase coupling of a reservoir simulator and computational fluid dynamics for accurate near-well flow[J].Journal of Petroleum Science and Engineering,2019,178:517-527.DOI:10.1016/j.petrol.2019.03.063.
[19] Cao J,Zhang N,Johansen T E.Applications of fully coupled well/near-well modeling to reservoir heterogeneity and formation damage effects[J].Journal of Petroleum Science and Engineering,2019,176:640-652.DOI:10.10106/j.petrol.2019.01.091.
[20] Pan L H,Freifeld B,Doughty C,et al.Fully coupled wellbore-reservoir modeling of geothermal heat extraction using CO2 as the working fluid[J].Geothermics,2015,53:100-113.DOI:10.1016/j.geothermics.2014.05.005.
[21] 石岩.CO2羽流地热系统运行机制及优化研究——以松辽盆地泉头组为例 [D].长春:吉林大学,2014.
  Shi Y. The operating mechanism and optimization research on carbon dioxide plume geothermal system in Quantou formation of Songliao basin [D].Changchun:Jilin University,2014.(in Chinese)
[22] 赵健植,鲁端峰.用响应曲面法研究高梯度磁场下燃煤PM10的捕集效率[J].中国电机工程学报,2009,29(20):74-78.DOI:10.13334/j.0258-8013.pcsee.2009.20.006.
Zhao J Z,Lu D F.Study on capture efficiency of PM10 from coal combustion in high gradient magnetic field using response surface methodology[J].Proceedings of the CSEE,2009,29(20):74-78.DOI:10.13334/j.0258-8013.pcsee.2009.20.006. (in Chinese)
[23] Sun X,Kim S,Yang S D,et al.Multi-objective optimization of a Stairmand cyclone separator using response surface methodology and computational fluid dynamics[J].Powder Technology,2017,320:51-65.DOI:10.1016/j.powtec.2017.06.065.

备注/Memo

备注/Memo:
收稿日期: 2019-01-14.
作者简介: 乔宗良(1981—),男,博士,讲师,qiaozongliang@seu.edu.cn.
基金项目: 国家自然科学基金资助项目(51776041).
引用本文: 乔宗良,汤有飞,王兴超,等.CO2羽流地热系统开采特性数值模拟及预测模型[J].东南大学学报(自然科学版),2019,49(4):764-772. DOI:10.3969/j.issn.1001-0505.2019.04.021.
更新日期/Last Update: 2019-07-20