[1]孙小肖,韩良,王健.机器人用CBR减速器设计及齿形优化[J].东南大学学报(自然科学版),2019,49(5):813-819.[doi:10.3969/j.issn.1001-0505.2019.05.001]
 Sun Xiaoxiao,Han Liang,Wang Jian.Design and tooth optimization of CBR reducer for robot[J].Journal of Southeast University (Natural Science Edition),2019,49(5):813-819.[doi:10.3969/j.issn.1001-0505.2019.05.001]
点击复制

机器人用CBR减速器设计及齿形优化()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
49
期数:
2019年第5期
页码:
813-819
栏目:
自动化
出版日期:
2019-09-20

文章信息/Info

Title:
Design and tooth optimization of CBR reducer for robot
作者:
孙小肖1韩良1王健2
1东南大学机械工程学院, 南京 211189; 2江苏哈工联合精密传动有限公司, 扬州 225100
Author(s):
Sun Xiaoxiao1 Han Liang1 Wang Jian2
1School of Mechanical Engineering, Southeast University, Nanjing 211189, China
2Jiangsu Hagong United Precision Transmission Co., Ltd., Yangzhou 225100, China
关键词:
摆线针轮传动 齿形优化 初始间隙 减速器
Keywords:
cycloid-pin drive tooth optimization initial gap reducer
分类号:
TP242
DOI:
10.3969/j.issn.1001-0505.2019.05.001
摘要:
针对工业机器人关节对空间结构和传动精度的要求,设计了一种新型单级精密摆线针轮减速器(CBR减速器),该减速器具有传动比大、扭转刚度高、负载力矩大、结构紧凑、尺寸范围大等优点.建立了摆线轮的标准齿廓方程及修形后的齿廓方程,通过几何分析,推导出等距修形、移距修形产生的初始间隙计算公式.综合考虑减速器对润滑与传动精度的要求,采用负等距加负移距的修形方式设计齿廓,并通过最小二乘优化方法求取最佳修形量.以CBR25型号减速器为例,求得最佳等距和移距修形量分别为-0.025、-0.018 mm.在减速器综合实验平台上对制造的CBR25减速器物理样机进行传动误差和扭转刚度试验.试验结果表明,通过传动试验绘制的传动误差曲线所得的传动误差值为0.785′,由扭转刚度试验绘制的迟滞曲线求得背隙值为1.336′,空程为1.204′,因而所设计的CBR减速器具有大扭转刚度、大负载和高精度,能满足机器人关节对减速器的使用要求.
Abstract:
According to the requirements of industrial robot joints for space structure and transmission accuracy, a new one-stage cycloid-pin gear reducer was designed called the China bearing reducer(CBR). The reducer had the advantages of large transmission ratio, high torsional stiffness, large load, compact structure, large size range, and so on. Both standard and modified profile equations of the cycloid gear were established. Based on the principle of geometric, the initial gap distribution caused by isometric and offset modification was analyzed. To meet the requirements for the lubrication and transmission precision, a method for compound modifications based on the negative isometry and the negative offset was presented. The best values of modifications were obtained by a least square optimization method. Taking the CBR25 reducer as an example, the optimal isometric and offset modification values were -0.025 and -0.018 mm, respectively. The physical prototype of CBR25 was manufactured and the transmission error and torsional stiffness experiments are carried out. The transmission error was 0.785′ calculated by transmission error curve drawn from the transmission error test data. And the backlash and the lost motion were 1.336′ and 1.204′ calculated by hysteresis curve drawn from the stiffness test data. The results show that the CBR reducer has advantages of large torsional stiffness, large load and high accuracy thus meeting the requirements for robot.

参考文献/References:

[1] 李力行, 洪淳赫. 摆线针轮行星传动中摆线轮齿形通用方程式的研究[J]. 大连铁道学院学报, 1992, 13(1):7-12. DOI:10.13291/j.cnki.djdxac.1992.01.002. (in Chinese)
Li L X, Hong C H. The general equations for the teeth profile of cycloidal gear[J]. Journal of Dalian Railway Institute, 1992, 13(1):7-12. DOI:10.13291/j.cnki.djdxac.1992.01.002. (in Chinese)
[2] Shin J H, Kwon S M. On the lobe profile design in a cycloid reducer using instant velocity center[J].Mechanism and Machine Theory, 2006, 41(5): 596-616. DOI:10.1016/j.mechmachtheory.2005.08.001.
[3] Blanche J G, Yang D C H. Cycloid drives with machining tolerances[J].Journal of Mechanisms Transmissions and Automation in Design, 1989, 111(3): 337-344. DOI:10.1115/1.3259004.
[4] 李力行, 何卫东,王秀琦,等. 机器人用高精度RV传动研究[J]. 中国机械工程, 1999, 10(9):1001-1002. DOI:10.3321/j.issn:1004-132X.1999.09.014.
Li L X, He W D, Wang X Q, et al. The study on high-accuracy RV drive used in robot[J]. China Mechanical Engineering, 1999, 10(9):1001-1002. DOI:10.3321/j.issn:1004-132X.1999.09.014. (in Chinese)
[5] 张东生, 关天民. 摆线针轮传动动态受力分析理论[J]. 机械设计, 2006, 23(10):35-37. DOI:10.3969/j.issn.1001-2354.2006.10.012.
Zhang D S, Guan T M. Dynamic force bearing analytical theory of cycloidal pinwheel transmission[J]. Journal of Machine Design, 2006, 23(10):35-37. DOI:10.3969/j.issn.1001-2354.2006.10.012. (in Chinese)
[6] 何卫东, 李力行, 李军. 机器人用RV传动中摆线轮受力分析[J]. 大连铁道学院学报, 1999,20(2):49-53. DOI:10.13291/j.cnki.djdxac,1999.02.009.
He W D, Li L X, Li J. Force analysis on cycloidal gear of the RV drive used in robot[J]. Journal of Dalian Railway Institute, 1999,20(2):49-53. DOI:10.13291/j.cnki.djdxac,1999.02.009. (in Chinese)
[7] 关天民, 张东生. 摆线针轮行星传动中反弓齿廓研究及其优化设计[J]. 机械工程学报, 2005, 41(1):151-156. DOI:10.3321/j.issn:0577-6686.2005.01.030.
Guan T M, Zhang D S. Inverse arch-shaped teeth profile and its optimization in a cycloid drive[J]. Chinese Journal of Mechanical Engineering, 2005, 41(1):151-156. DOI:10.3321/j.issn:0577-6686.2005.01.030. (in Chinese)
[8] 何卫东, 李力行, 李欣. 机器人用高精度RV减速器中摆线轮的优化新齿形[J]. 机械工程学报, 2000, 36(3):51-55. DOI:10.3321/j.issn:0577-6686.2000.03.012.
He W D, Li L X, Li X. New optimized tooth-profile of cycloidal gear of high precision RV reducer used in robot[J]. Chinese Journal of Mechanical Engineering, 2000, 36(3):51-55. DOI:10.3321/j.issn:0577-6686.2000.03.012. (in Chinese)
[9] Wang J, Luo S M, Su D Y. Multi-objective optimal design of cycloid speed reducer based on genetic algorithm[J]. Mechanism and Machine Theory, 2016, 102: 135-148. DOI:10.1016/j.mechmachtheory.2016.04.007.
[10] Lin W S, Shih Y P, Lee J J. Design of a two-stage cycloidal gear reducer with tooth modifications[J]. Mechanism and Machine Theory, 2014, 79: 184-197. DOI:10.1016/j.mechmachtheory.2014.04.009.
[11] 张俊, 宋轶民, 张策. 少齿差环板式减速器的弹性动力学分析[J]. 机械工程学报, 2008, 44(2):118-123, 128. DOI:10.3321/j.issn:0577-6686.2008.02.020.
Zhang J, Song Y M, Zhang C. Elasto-dynamic analysis of ring-plate gear reducer with small tooth number difference[J]. Chinese Journal of Mechanical Engineering, 2008, 44(2):118-123, 128. DOI:10.3321/j.issn:0577-6686.2008.02.020. (in Chinese)
[12] 张大卫, 王刚, 黄田,等. RV减速机动力学建模与结构参数分析[J]. 机械工程学报, 2001, 37(1):69-74. DOI:10.3321/j.issn:0577-6686.2001.01.016.
Zhang D W, Wang G, Huang T, et al. Dynamic formulation of RV reducer and analysis of structural parameters[J]. Chinese Journal of Mechanical Engineering, 2001, 37(1):69-74. DOI:10.3321/j.issn:0577-6686.2001.01.016. (in Chinese)
[13] Hsieh C F. Dynamics analysis of cycloidal speed reducers with pinwheel and nonpinwheel designs[J]. Journal of Mechanical Design, 2014, 136(9): 091008. DOI:10.1115/1.4027850.
[14] Tran T L, Pham A D, Ahn H J. Lost motion analysis of one stage cycloid reducer considering tolerances[J]. International Journal of Precision Engineering and Manufacturing, 2016, 17(8):1009-1016. DOI:10.1007/s12541-016-0123-8.

备注/Memo

备注/Memo:
收稿日期: 2019-03-20.
作者简介: 孙小肖(1989—),男,博士生;韩良(联系人),男,博士,教授,博士生导师,melhan@seu.edu.cn.
基金项目: 国家自然科学基金资助项目(51275087)、江苏省科技计划资助项目(SBE2015000030)、江苏省普通高校研究生科研创新计划资助项目(KYLX16_0187).
引用本文: 孙小肖,韩良,王健.机器人用CBR减速器设计及齿形优化[J].东南大学学报(自然科学版),2019,49(5):813-819. DOI:10.3969/j.issn.1001-0505.2019.05.001.
更新日期/Last Update: 2019-09-20