# [1]姜东,徐宇,王桂伦,等.锁定状态下球铰连接桁架的刚度性能[J].东南大学学报(自然科学版),2019,49(5):820-825.[doi:10.3969/j.issn.1001-0505.2019.05.002] 　Jiang Dong,Xu Yu,Wang Guilun,et al.Stiffness property of locked truss with spherical hinge connection[J].Journal of Southeast University (Natural Science Edition),2019,49(5):820-825.[doi:10.3969/j.issn.1001-0505.2019.05.002] 点击复制 锁定状态下球铰连接桁架的刚度性能() 分享到： var jiathis_config = { data_track_clickback: true };

49

2019年第5期

820-825

2019-09-20

## 文章信息/Info

Title:
Stiffness property of locked truss with spherical hinge connection

1南京林业大学机械电子工程学院, 南京 210037; 2东南大学空天机械动力学研究所, 南京 211189
Author(s):
1School of Mechanical and Electronic Engineering, Nanjing Forestry University, Nanjing 210037, China
2Institute of Aerospace Machinery and Dynamics, Southeast University, Nanjing 211189, China

Keywords:

TH113;O327
DOI:
10.3969/j.issn.1001-0505.2019.05.002

Abstract:
The stiffness of a deployable truss structure with spherical hinge connection was analyzed by theoretical analysis, contact finite element method and experimental method. First, the equivalent stiffness in the x,y direction of the truss structure was obtained based on the energy principle. For the compression stiffness in the z direction, the contact between the spherical hinge and the corner node cannot be neglected, and the Winkler elastic foundation theory was utilized to obtain the equivalent stiffness of the spherical hinge connection. The equivalent z axial stiffness of the structure was calculated according to the spring series theory. Then, considering the contact state, the contact finite element modeling was used for stiffness analysis.The contact object and the target body were assumed to be deformable. The stiffness of the structure in the x,y,z direction were obtained by applying periodic boundary condition. Finally, the experimental tests were conducted to verify the accuracy of the contact finite element method.The results show that the contact finite element method can be applied to predict the stiffness properties of the structure with spherical hinge. The compression stiffness of the structure in the z direction is less than those in the x and y directions.

## 参考文献/References:

[1] Meguro A, Shintate K, Usui M, et al. In-orbit deployment characteristics of large deployable antenna reflector onboard engineering test satellite Ⅷ[J]. Acta Astronautica, 2009, 65(9/10): 1306-1316. DOI:10.1016/j.actaastro.2009.03.052.
[2] Ling Y, Song A G, Lu W. A novel rigid-flexible combined sampler for lunar exploration[J].Mechanism and Machine Theory, 2014, 77: 25-34. DOI:10.1016/j.mechmachtheory.2014.01.015.
[3] Johnson L, Whorton M, Heaton A, et al. NanoSail-D: A solar sail demonstration mission[J].Acta Astronautica, 2011, 68(5/6): 571-575. DOI:10.1016/j.actaastro.2010.02.008.
[4] Puig L, Barton A, Rando N. A review on large deployable structures for astrophysics missions[J]. Acta Astronautica, 2010, 67(1/2): 12-26. DOI:10.1016/j.actaastro.2010.02.021.
[5] Gros D, Messner D. The deployable articulated-mast-enabling technology for the shattle radar topography mission[C]//Proceedings of the 33rd Aerospace Mechanisms Symposium. Sunnyvale, CA, USA, 1999: 15-31.
[6] Chu Z R, Deng Z Q, Qi X Z, et al. Modeling and analysis of a large deployable antenna structure[J].Acta Astronautica, 2014, 95: 51-60. DOI:10.1016/j.actaastro.2013.10.015.
[7] 陈鹿民, 阎绍泽, 金德闻, 等. 含间隙铰空间可展桁架结构的动力学实验[J]. 清华大学学报(自然科学版), 2003, 43(8): 1027-1030. DOI:10.3321/j.issn:1000-0054.2003.08.010.
Chen L M, Yan S Z, Jin D W, et al. Dynamic experiment of a space deployable truss structure with joint clearances[J]. Journal of Tsinghua University(Science and Technology), 2003, 43(8): 1027-1030. DOI:10.3321/j.issn:1000-0054.2003.08.010.
[8] 关富玲, 戴璐. 双环可展桁架结构动力学分析与试验研究[J]. 浙江大学学报(工学版), 2012, 46(9): 1605-1610, 1646.DOI:10.3785/j.issn.1008-973X.2012.09.009.
Guan F L, Dai L. Dynamic analysis and test research of double-ring deployable truss structure[J]. Journal of Zhejiang University(Engineering Science), 2012, 46(9): 1605-1610, 1646. DOI:10.3785/j.issn.1008-973X.2012.09.009. (in Chinese)
[9] Chierichetti M. Load and response identification for a nonlinear flexible structure subject to harmonic loads[J]. Journal of Computational and Nonlinear Dynamics, 2014, 9(1): 011009. DOI:10.1115/1.4025505.
[10] 郭宏伟, 刘荣强, 邓宗全. 索杆铰接式伸展臂动力学建模与分析[J]. 机械工程学报, 2011, 47(9): 66-71. DOI:10.3901/JME.2011.09.066.
Guo H W, Liu R Q, Deng Z Q. Dynamic modeling and analysis of cable-strut deployable articulated mast[J]. Journal of Mechanical Engineering, 2011, 47(9): 66-71. DOI:10.3901/JME.2011.09.066. (in Chinese)
[11] 刘福寿, 金栋平. 环形桁架结构径向振动的等效圆环模型[J]. 力学学报, 2016, 48(5): 1184-1191. DOI:10.6052/0459-1879-16-076.
Liu F S, Jin D P. Equivalent circular ring model for the radial vibration analysis of hoop truss structures[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(5): 1184-1191. DOI:10.6052/0459-1879-16-076. (in Chinese)
[12] 刘福寿, 金栋平, 陈辉. 环形桁架结构动力分析的等效力学模型[J]. 振动工程学报, 2013, 26(4): 516-521. DOI:10.3969/j.issn.1004-4523.2013.04.007.
Liu F S, Jin D P, Chen H. An equivalent mechanics model for the dynamic analysis of hoop truss structures[J]. Journal of Vibration Engineering, 2013, 26(4): 516-521. DOI:10.3969/j.issn.1004-4523.2013.04.007. (in Chinese)
[13] Murphey T. Symbolic equations for the stiffness and strength of straight longeron trusses[C]//47th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference. Reston, VA, USA, 2006:2123. DOI:10.2514/6.2006-2123.
[14] 宋正华, 姜东, 曹芝腑, 等. 含铰可展桁架结构非线性模型修正方法研究[J]. 振动与冲击, 2018, 37(1): 21-26. DOI:10.13465/j.cnki.jvs.2018.01.004.
Song Z H, Jiang D, Cao Z F, et al. Nonlinear model updating method for deployable trusses with joints[J].Journal of Vibration and Shock, 2018, 37(1): 21-26. DOI:10.13465/j.cnki.jvs.2018.01.004. (in Chinese)
[15] 姜东, 费庆国, 吴邵庆. 基于区间分析的不确定性结构动力学模型修正方法[J]. 振动工程学报, 2015, 28(3): 352-358. DOI:10.16385/j.cnki.issn.1004-4523.2015.03.003.
Jiang D, Fei Q G, Wu S Q. Updating of structural dynamics model with uncertainty based on interval analysis[J]. Journal of Vibration Engineering, 2015, 28(3): 352-358. DOI:10.16385/j.cnki.issn.1004-4523.2015.03.003. (in Chinese)
[16] 姜东, 费庆国, 吴邵庆. 基于摄动法的不确定性有限元模型修正方法研究[J]. 计算力学学报, 2014, 31(4): 431-437, 445. DOI:10.7511/jslx201404004.
Jiang D, Fei Q G, Wu S Q. A study on stochastic finite element model updating based on perturbation approach[J]. Chinese Journal of Computational Mechanics, 2014, 31(4): 431-437, 445. DOI:10.7511/jslx201404004. (in Chinese)
[17] Liu J, Li B. Theoretical and experimental identification of clearance nonlinearities for a continuum structure[J]. Journal of Computational and Nonlinear Dynamics, 2016, 11(4): 041019. DOI:10.1115/1.4033005.
[18] Hong J, Talbot D, Kahraman A. A stiffness formulation for spline joints[J].Journal of Mechanical Design, 2016, 138(4): 043301. DOI:10.1115/1.4032631.
[19] 周李真辉, 曹芝腑, 姜东, 等. 锁定状态下一维可展桁架球铰连接刚度识别[J]. 振动与冲击, 2018, 37(16): 219-226. DOI:10.13465/j.cnki.jvs.2018.16.032.
Zhou L Z H, Cao Z F, Jiang D, et al. Stiffness identification of the spherical hinge of locked 1D deployable truss[J].Journal of Vibration and Shock, 2018, 37(16): 219-226. DOI:10.13465/j.cnki.jvs.2018.16.032. (in Chinese)
[20] 曹芝腑, 费庆国, 姜东, 等. 含铰柔性结构的非线性模态分析[J]. 振动工程学报, 2018, 31(4): 573-581. DOI:10.16385/j.cnki.issn.1004-4523.2018.04.004.
Cao Z F, Fei Q G, Jiang D, et al. Nonlinear normal modal analysis of flexible structures with nonlinear hinge[J]. Journal of Vibration Engineering, 2018, 31(4): 573-581. DOI:10.16385/j.cnki.issn.1004-4523.2018.04.004. (in Chinese)
[21] Klimchik A, Chablat D, Pashkevich A. Stiffness modeling for perfect and non-perfect parallel manipulators under internal and external loadings[J]. Mechanism and Machine Theory, 2014, 79: 1-28. DOI:10.1016/j.mechmachtheory.2014.04.002.
[22] 王旻睿, 谭志勇, 何顶顶, 等. 高温环境复合材料螺栓连接振动的防松试验[J]. 振动.测试与诊断, 2018, 38(6): 1169-1175, 1292. DOI:10.16450/j.cnki.issn.1004-6801.2018.06.013.
Wang M R,Tan Z Y, He D D, et al. Anti-loosening experiment of composite bolted Structures under high temperature and vibration circumstance[J]. Journal of Vibration,Measurement & Diagnosis, 2018, 38(6): 1169-1175, 1292. DOI:10.16450/j.cnki.issn.1004-6801.2018.06.013. (in Chinese)
[23] 陆飞, 曹芝腑, 姜东, 等. 基于非线性动响应的夹持松动特性研究[J]. 振动.测试与诊断, 2018, 38(4): 712-718, 870. DOI:10.16450/j.cnki.issn.1004-6801.2018.04.009.
Lu F, Cao Z F, Jiang D, et al. Study on the characteristic of clamped looseness based on nonlinear dynamic response[J].Journal of Vibration, Measurement & Diagnosis, 2018, 38(4): 712-718, 870. DOI:10.16450/j.cnki.issn.1004-6801.2018.04.009. (in Chinese)
[24] 姜东, 吴邵庆, 史勤丰, 等. 基于薄层单元的螺栓连接结构接触面不确定性参数识别[J]. 工程力学, 2015, 32(4): 220-227. DOI:10.6052/j.issn.1000-4750.2013.10.0920.
Jiang D, Wu S Q, Shi Q F, et al. Contact interface parameter identification of bolted joint structure with uncertainty using thin layer element method[J]. Engineering Mechanics, 2015, 32(4): 220-227. DOI:10.6052/j.issn.1000-4750.2013.10.0920. (in Chinese)
[25] Firrone C M, Battiato G, Epureanu B I. Modeling the microslip in the flange joint and its effect on the dynamics of a multistage bladed disk assembly[J]. Journal of Computational and Nonlinear Dynamics, 2018, 13(1): 011011. DOI:10.1115/1.4037796.
[26] Jackson R L, Green I. A finite element study of elasto-plastic hemispherical contact against a rigid flat[J].Journal of Tribology, 2005, 127(2): 343. DOI:10.1115/1.1866166.
[27] Liu C S, Zhang K, Yang L. The compliance contact model of cylindrical joints with clearances[J].Acta Mechanica Sinica, 2005, 21(5): 451-458. DOI:10.1007/s10409-005-0061-7.