[1]游怀亮,韩吉田,刘洋.采用有机工质喷射器制冷的SOFC/MGT冷热电联供系统性能分析[J].东南大学学报(自然科学版),2019,49(5):840-850.[doi:10.3969/j.issn.1001-0505.2019.05.005]
 You Huailiang,Han Jitian,Liu Yang.Performance analysis of CCHP system based on SOFC/MGT hybrid system with organic steam ejector refrigerator[J].Journal of Southeast University (Natural Science Edition),2019,49(5):840-850.[doi:10.3969/j.issn.1001-0505.2019.05.005]
点击复制

采用有机工质喷射器制冷的SOFC/MGT冷热电联供系统性能分析()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
49
期数:
2019年第5期
页码:
840-850
栏目:
能源与动力工程
出版日期:
2019-09-20

文章信息/Info

Title:
Performance analysis of CCHP system based on SOFC/MGT hybrid system with organic steam ejector refrigerator
作者:
游怀亮韩吉田刘洋
山东大学能源与动力工程学院, 济南 250061
Author(s):
You Huailiang Han Jitian Liu Yang
School of Energy and Power Engineering, Shandong University, Jinan 250061, China
关键词:
冷热电联供系统 固体氧化物燃料电池 微型燃气轮机 喷射器 热力性能分析
Keywords:
combined cooling heating and power(CCHP)system solid oxide fuel cell micro-gas turbine steam ejector thermodynamic analysis
分类号:
TK019
DOI:
10.3969/j.issn.1001-0505.2019.05.005
摘要:
为了提高分布式供能系统中化石能源的能源综合利用效率,提出了一种采用有机工质喷射器制冷的SOFC/MGT冷热电联供系统.首先建立并验证了该联供系统的数学模型,然后研究了空燃比、SOFC工作压力、SOFC入口温度、ORC工质流率等系统关键设计参数对联供系统能效及性能的影响.研究结果表明:在设计工况下,联供系统输出功率为300 kW,并可同时向用户提供32.12 kW热负荷及59.34 kW冷负荷;联供系统发电效率、效率及能源综合利用效率分别为72.01%、61.87%、93.97%;通过梯级利用SOFC/MGT联合发电系统排气余热及再利用ORC透平排气余压,联供系统能源综合利用效率比单独的SOFC/MGT联合发电系统提高了30.81%;联供系统中损失最大的部件依次为SOFC、后燃烧室、回热器及预热器3.
Abstract:
To improve the overall energy efficiency of fossil energy utilized in distributed energy systems, a combined cooling, heating and power(CCHP)system based on SOFC(solid oxide fuel cell)/MGT(micro-gas turbine)integrated with an organic steam ejector refrigerator(SER)was proposed. First, a mathematical model for the CCHP system was developed and validated. Then, a parametric study was performed to observe the effects on key design parameters, such as air to fuel ratio, SOFC working pressure, SOFC inlet temperature, and mass flow rate of organic Rankine cycle(ORC)working medium on energy and exergy performances of the proposed system. The results indicate that under design conditions, the CCHP system can provide power, heating and cooling loads of 300, 32.12 and 59.34 kW, respectively. The electrical, the exergy and the overall energy efficiencies of the system are 72.01%, 61.87% and 93.97%. Through ORC/SER and heat exchanger based on the principle of “energy cascade utilization”, the overall energy efficiency of the CCHP system can increase by 30.81% compared with the single SOFC/MGT hybrid power system. It is also observed that the largest exergy loss occurs in SOFC followed by after burner, regenerator and preheater 3.

参考文献/References:

[1] Krajai G,Dui N,Vujanovi M,et al.Sustainable development of energy,water and environment systems for future energy technologies and concepts[J].Energy Conversion and Management,2016,125:1-14.DOI:10.1016/j.enconman.2016.08.050.
[2] Theo W L,Lim J S,Ho W S,et al.Review of distributed generation(DG)system planning and optimisation techniques:Comparison of numerical and mathematical modelling methods[J].Renewable and Sustainable Energy Reviews,2017,67:531-573.DOI:10.1016/j.rser.2016.09.063.
[3] Traverso A,Magistri L,Massardo A F.Turbomachinery for the air management and energy recovery in fuel cell gas turbine hybrid systems[J].Energy,2010,35(2):764-777.DOI:10.1016/j.energy.2009.09.027.
[4] Maghanki M M,Ghobadian B,Najafi G,et al.Micro combined heat and power(MCHP)technologies and applications[J].Renewable and Sustainable Energy Reviews,2013,28:510-524.DOI:10.1016/j.rser.2013.07.053.
[5] 翁一武,翁史烈,苏明.以微型燃气轮机为核心的分布式供能系统[J].中国电力,2003,36(3):1-4.DOI:10.3969/j.issn.1004-9649.2003.03.001.
Weng Y W,Weng S L,Su M.Distributed power system based on micro gas turbine[J].Electric Power,2003,36(3):1-4.DOI:10.3969/j.issn.1004-9649.2003.03.001. (in Chinese)
[6] 潘蕾,赵德材,张俊礼,等.微燃机-冷热电联供机组的Hammerstein模型及非线性广义预测控制[J].东南大学学报(自然科学版),2017,47(3):500-505.DOI:10.3969/j.issn.1001-0505.2017.03.015.
Pan L,Zhao D C,Zhang J L,et al.Hammerstein model and nonlinear generalized predictive control of MGT-CCHP[J].Journal of Southeast University(Natural Science Edition),2017,47(3):500-505.DOI:10.3969/j.issn.1001-0505.2017.03.015. (in Chinese)
[7] Sanaye S,Katebi A.4E analysis and multi objective optimization of a micro gas turbine and solid oxide fuel cell hybrid combined heat and power system[J].Journal of Power Sources,2014,247:294-306.DOI:10.1016/j.jpowsour.2013.08.065.
[8] 邵应娟,金保昇,钟文琪,等.微型有机朗肯循环热电系统建模与性能分析[J].东南大学学报(自然科学版),2013,43(4):798-802.DOI:10.3969/j.issn.1001-0505.2013.04.023.
Shao Y J,Jin B S,Zhong W Q,et al.Modeling and performance analysis of micro-CHP system with organic Rankine cycle[J].Journal of Southeast University(Natural Science Edition),2013,43(4):798-802.DOI:10.3969/j.issn.1001-0505.2013.04.023. (in Chinese)
[9] Ziókowski P,Kowalczyk T,Kornet S,et al.On low-grade waste heat utilization from a supercritical steam power plant using an ORC-bottoming cycle coupled with two sources of heat[J].Energy Conversion and Management,2017,146:158-173.DOI:10.1016/j.enconman.2017.05.028.
[10] Bavarsad P G.Energy and exergy analysis of internal reforming solid oxide fuel cell-gas turbine hybrid system[J].International Journal of Hydrogen Energy,2007,32(17):4591-4599.DOI:10.1016/j.ijhydene.2007.08.004.
[11] Hotz N,Senn S M,Poulikakos D.Exergy analysis of a solid oxide fuel cell micropowerplant[J].Journal of Power Sources,2006,158(1):333-347.DOI:10.1016/j.jpowsour.2005.09.023.
[12] Chan S.Multi-level modeling of SOFC-gas turbine hybrid system[J].International Journal of Hydrogen Energy,2003,28(8):889-900.DOI:10.1016/s0360-3199(02)00160-x.
[13] Ebrahimi M,Ahookhosh K.Integrated energy-exergy optimization of a novel micro-CCHP cycle based on MGT-ORC and steam ejector refrigerator[J].Applied Thermal Engineering,2016,102:1206-1218.DOI:10.1016/j.applthermaleng.2016.04.015.
[14] 翁一武.低品位热能转换过程及利用[M].上海:上海交通大学出版社,2014:101-120.
[15] Ebrahimi M,Keshavarz A,Jamali A.Energy and exergy analyses of a micro-steam CCHP cycle for a residential building[J].Energy and Buildings,2012,45:202-210.DOI:10.1016/j.enbuild.2011.11.009.
[16] 岳秀艳,韩吉田,于泽庭,等.设置富氨蒸气回热器的固体氧化物燃料电池/燃气轮机/卡琳娜联合循环系统的热力性能分析[J].中国电机工程学报,2014,34(26):4483-4492.DOI:10.13334/j.0258-8013.pcsee.2014.26.006.
Yue X Y,Han J T,Yu Z T,et al.Thermodynamic analysis of SOFC/GT/KCS integrated power generation system with reheater of concentrated ammonia vapor[J].Proceedings of the CSEE,2014,34(26):4483-4492.DOI:10.13334/j.0258-8013.pcsee.2014.26.006. (in Chinese)
[17] Ameri M,Ahmadi P,Hamidi A.Energy,exergy and exergoeconomic analysis of a steam power plant:A case study[J].International Journal of Energy Research,2009,33(5):499-512.DOI:10.1002/er.1495.
[18] Kanoglu M,Dincer I,Rosen M A.Understanding energy and exergy efficiencies for improved energy management in power plants[J].Energy Policy,2007,35(7):3967-3978.DOI:10.1016/j.enpol.2007.01.015.
[19] Cocco D,Tola V.Use of alternative hydrogen energy carriers in SOFC-MGT hybrid power plants[J].Energy Conversion and Management,2009,50(4):1040-1048.DOI:10.1016/j.enconman.2008.12.019.
[20] Mosaffa A H,Farshi L G.Thermodynamic and economic assessments of a novel CCHP cycle utilizing low-temperature heat sources for domestic applications[J].Renewable Energy,2018,120:134-150.DOI:10.1016/j.renene.2017.12.099.

备注/Memo

备注/Memo:
收稿日期: 2019-03-03.
作者简介: 游怀亮(1989—),男,博士生;韩吉田(联系人),男,博士,教授,博士生导师,jthan@sdu.edu.cn.
基金项目: 国家自然科学基金国际(地区)合作交流资助项目(41761144067)、国家自然科学基金资助项目(51376110).
引用本文: 游怀亮,韩吉田,刘洋.采用有机工质喷射器制冷的SOFC/MGT冷热电联供系统性能分析[J].东南大学学报(自然科学版),2019,49(5):840-850. DOI:10.3969/j.issn.1001-0505.2019.05.005.
更新日期/Last Update: 2019-09-20