[1]刘莎,沈炯,王培红,等.基于流属性分类的热力系统成本建模及计算方法[J].东南大学学报(自然科学版),2019,49(5):858-863.[doi:10.3969/j.issn.1001-0505.2019.05.007]
 Liu Sha,Shen Jiong,Wang Peihong,et al.Improvement of thermal system exergy cost modeling and calculation method based on classification of exergy flow attributes[J].Journal of Southeast University (Natural Science Edition),2019,49(5):858-863.[doi:10.3969/j.issn.1001-0505.2019.05.007]
点击复制

基于流属性分类的热力系统成本建模及计算方法()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
49
期数:
2019年第5期
页码:
858-863
栏目:
能源与动力工程
出版日期:
2019-09-20

文章信息/Info

Title:
Improvement of thermal system exergy cost modeling and calculation method based on classification of exergy flow attributes
作者:
刘莎12沈炯1王培红1张俊礼1
1东南大学能源与环境学院, 南京 210096; 2金陵科技学院机电工程学院, 南京 211169
Author(s):
Liu Sha12 Shen Jiong1 Wang Peihong1 Zhang Junli1
1 School of Energy and Environment, Southeast University, Nanjing 210096, China
2 School of Electvical Engineering, Jingling Institute of Technology, Nanjing 211169, China
关键词:
热力系统 热经济学 成本建模 流属性分类
Keywords:
thermal system thermal economics exergy cost modeling classification of exergy flow attributes
分类号:
TK123
DOI:
10.3969/j.issn.1001-0505.2019.05.007
摘要:
为规范编制生产结构图提供依据,简化链式微分法则成本建模方法,分离导致单位产品成本增大的不同影响因素,提出了基于流属性分类的热力系统成本建模及计算方法.给出基于流属性分类法生产结构图生成规则,将生产过程中不同类型流进行归类,按照热力系统流属性分类构建虚拟组元以及生产组元与虚拟组元连接关系原则,结合生产结构图定义了3类建模准则,根据生产组元的输入输出流属性分类将生产组元分为4类,构造热力系统单位成本的迭代算法. 算法可有效避免高维模型的推导误差,计算结果分析显示,相同属性的流拥有相同的成本,随着热力系统生产过程的递进,不同属性的流成本逐渐增大,相邻的不同属性流成本差值为该生产过程本身的热力学损失,可分离不同属性流成本的成因,给出不同属性流成本之间的交互关系.仿真计算表明,在保持较高仿真精度的基础上,仿真耗时由3 s下降为1 s.
Abstract:
To provide a basis for standardizing the production structure diagram,simplifying the chain differential rule exergy cost modeling method, separating the different influencing factors leading to the increase of the unit product exergy cost, an improved exergy cost modeling and its calculation method for thermal systems were proposed. The rules to generate the production structure diagram based on exergy flow attribute classification method were given different types of exergy flow in production process were classified. The the principle of constructing virtual component and the relationship between the production component and the virtual component was proposed in accordance with classification of exergy flow attributes, three kinds of modeling criteria were defined based on the production structure diagram, the attributes of input and output rake flow were classified to divide the production components into four categories, and an iteration algorithm for the unit exergy cost of the thermal system was constructed. The algorithm could effectively avoid the error of the high-dimensional model. The analysis of calculation results shows that the same attributes of the exergy have the same exergy costs. With the progress of the thermal system production process, the costs of different attributes of the exergy increase gradually. The difference value of the exergy cost between adjacent different attributes of the exergy flow is the thermodynamic loss of the production process. The calculation results can distinguish the causes of exergy costs of different attributes, and give the interaction between exergy costs of different attributes. The simulation results show that the simulation time-consuming decreases from 3 to 1 s on the basis of maintaining high simulation accuracy.

参考文献/References:

[1] von Spakovsky M R. Application of engineering functional analysis to the analysis and optimization of the CGAM problem[J]. Energy, 1994, 19(3): 343-364. DOI:10.1016/0360-5442(94)90115-5.
[2] Bejan A. Advanced engineering thermodynamics[M]. New York: Wiley, 1988:34-39.
[3] Kotas T J. The exergy method of thermal plant analysis[M]. Malabar, USA: Krieger Pub,1995.
[4] Valero A, Correas L, Zaleta A, et al. On the thermoeconomic approach to the diagnosis of energy system malfunctions: Part 1: The TADEUS problem[J].Energy,2004, 29(12/13/14/15): 1875-1887. DOI:10.1016/j.energy.2004.04.053.
[5] Valero A, Correas L, Zaleta A, et al. On the thermoeconomic approach to the diagnosis of energy system malfunctions: Part 2:Malfunction definitions and assessment[J]. Energy, 2004, 29(12/13/14/15): 1889-1907. DOI:10.1016/j.energy.2004.03.008.
[6] Serra L, Lozano M A, Valero A, et al. On average and marginal cost management [J]. Energy, 2002, 43(9/10/11/12):1503-1518.
[7] 亓海青, 韩巍, 张娜, 等. 基于能的品位概念的经济分析方法及其案例分析[J]. 中国电机工程学报, 2016, 36(12): 3223-3230. DOI:10.13334/j.0258-8013.pcsee.152803.
Qi H Q, Han W, Zhang N, et al. Exergoeconomic analysis methodology based on energy level and case study[J]. Proceedings of the CSEE, 2016, 36(12): 3223-3230. DOI:10.13334/j.0258-8013.pcsee.152803. (in Chinese)
[8] 樊嘉欣. 基于热经济学的火电机组节能潜力分析[D]. 北京: 华北电力大学(北京), 2017.
  Fan J X. Energy-saving potential analysis of a thermal power plant based on thermoeconomic analysis[D]. Beijing: North China Electric Power University, 2017.(in Chinese)
[9] 王泽伟. 基于热经济学会计模式的机组经济性分析[D]. 北京: 华北电力大学, 2016.
  Wang Z W. Economic analysis of the unit based on thermal economics accounting model[D]. Beijing: North China Electric Power University, 2016.(in Chinese)
[10] 卜欢欢, 王培红, 沈发荣. 基于结构理论的高中压缸改造技术经济分析[J]. 汽轮机技术, 2018, 60(2): 130-134.
  Bu H H, Wang P H, Shen F R. Techno-economic analysis of HP and IP cylinder retrofit based on structural theory[J]. Turbine Technology, 2018, 60(2): 130-134.(in Chinese)
[11] 赵春, 王培红. 燃气-蒸汽联合循环热经济学分析评价指标研究[J]. 中国电机工程学报, 2013, 33(23): 44-50, 10. DOI:10.13334/j.0258-8013.pcsee.2013.23.012.
Zhao C, Wang P H. Investigation on the evaluation indices for thermoeconomic analysis of combined cycle power plants[J]. Proceedings of the CSEE, 2013, 33(23): 44-50, 10. DOI:10.13334/j.0258-8013.pcsee.2013.23.012. (in Chinese)
[12] 李慧君, 高丽莎, 关秀红. 1000MW机组热力设备的热经济学分析[J].汽轮机技术, 2013,55(1):71-75.
  Li H J, Gao L S, Guan X H. Thermoeconomic analysis of thermal equipments of 1000MW power plant [J]. Turbine Technology, 2013,55(1):71-75.(in Chinese).
[13] 王宁玲, 冯澎湃, 付鹏, 等. 一种基于分析的火电机组热力系统性能劣化诊断方法[J]. 工程热物理学报, 2016, 37(6): 1147-1153.
  Wang N L, Feng P P, Fu P, et al. Performance degradation diagnosis of thermal power system: An exergy analysis approach[J]. Journal of Engineering Thermophysics, 2016, 37(6): 1147-1153.(in Chinese)
[14] Pablo Arena A, Borchiellini R. Application of different productive structures for thermoeconomic diagnosis of a combined cycle power plant[J]. International Journal of Thermal Sciences, 1999, 38(7): 601-612. DOI:10.1016/s0035-3159(99)80040-3.
[15] 张俊礼, 沈炯, 李益国, 等. 燃料-产品多义化下的9E燃气轮机热电联产机组产品成本分析[J]. 燃气轮机技术, 2017, 30(4): 16-22. DOI:10.16120/j.cnki.issn1009-2889.2017.04.003.
Zhang J L, Shen J, Li Y G, et al. Product exergy cost analysis of 9E gas turbine combined heat and power under various fuel-product definitions[J]. Gas Turbine Technology, 2017, 30(4): 16-22. DOI:10.16120/j.cnki.issn1009-2889.2017.04.003. (in Chinese)
[16] 张超,刘黎明,陈胜,等.基于热经济学结构理论的热力系统性能评价[J]. 中国电机工程学报. 2005, 25(24):108-113.
  Zhang C, Liu L M, Chen S, et al. Performance evaluation of thermal power system based on the structure theory of thermoeconomic [J]. Proceedings of the CSEE, 2005, 25(24):108-113.(in Chinese).
[17] 刘莎. 基于热经济学的大型汽轮机系统性能分析及优化[D].南京:东南大学,2014.
  Liu S. Research on the turbine system performance analysis and optimization based on thermoeconomics structure theory. [D]. Nanjing:Southeast University,2014.(in Chinese)
[18] 张超. 复杂能量系统的热经济学分析与优化[D].武汉:华中科技大学,2006.
  Zhang C. Thermoeconomic analysis and optimization of complex energy systems [D]. Wuhan: Huazhong University of Science and Technology,2006.(in Chinese)

相似文献/References:

[1]赵伶玲,周强泰,吕震中,等.125 MW机组热力系统改造对整机热经济性的影响[J].东南大学学报(自然科学版),2003,33(6):788.[doi:10.3969/j.issn.1001-0505.2003.06.025]
 Zhao Lingling,Zhou Qiangtai,Lü Zhenzhong,et al.Influence of 125 MW thermodynamic system reform for the economic operation of power set[J].Journal of Southeast University (Natural Science Edition),2003,33(5):788.[doi:10.3969/j.issn.1001-0505.2003.06.025]
[2]胥建群,孙友源,杨涛,等.基于特性曲线的电站热力系统故障诊断方法[J].东南大学学报(自然科学版),2014,44(4):775.[doi:10.3969/j.issn.1001-0505.2014.04.017]
 Xu Jianqun,Sun Youyuan,Yang Tao,et al.Malfunction diagnosis method for thermal system of power plant based on characteristic curve[J].Journal of Southeast University (Natural Science Edition),2014,44(5):775.[doi:10.3969/j.issn.1001-0505.2014.04.017]

备注/Memo

备注/Memo:
收稿日期: 2019-01-12.
作者简介: 刘莎(1982—),女,博士;沈炯(联系人),男,博士,教授,博士生导师,shenj@seu.edu.cn.
引用本文: 刘莎,沈炯,王培红,等.基于流属性分类的热力系统成本建模及计算方法[J].东南大学学报(自然科学版),2019,49(5):858-863. DOI:10.3969/j.issn.1001-0505.2019.05.007.
更新日期/Last Update: 2019-09-20