[1]李蓓蓓,吴磊,邵云,等.钨掺杂TiO2可见光下去除阿替洛尔的反应特性[J].东南大学学报(自然科学版),2019,49(5):864-872.[doi:10.3969/j.issn.1001-0505.2019.05.008]
 Li Beibei,Wu Lei,Shao Yun,et al.Reaction characteristics of atenolol removal using W-doped TiO2 particles under visible light[J].Journal of Southeast University (Natural Science Edition),2019,49(5):864-872.[doi:10.3969/j.issn.1001-0505.2019.05.008]
点击复制

钨掺杂TiO2可见光下去除阿替洛尔的反应特性()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
49
期数:
2019年第5期
页码:
864-872
栏目:
化学化工
出版日期:
2019-09-20

文章信息/Info

Title:
Reaction characteristics of atenolol removal using W-doped TiO2 particles under visible light
作者:
李蓓蓓吴磊邵云李莲
东南大学能源与环境学院, 南京210096
Author(s):
Li Beibei Wu Lei Shao Yun Li Lian
School of Energy and Environment, Southeast University, Nanjing 210096, China
关键词:
钨掺杂 TiO2 可见光催化 阿替洛尔 反应机理
Keywords:
tungsten modification visible light photocatalysis atenolol mechanism
分类号:
O643.36;X703
DOI:
10.3969/j.issn.1001-0505.2019.05.008
摘要:
采用溶胶-凝胶法制备了钨掺杂改性TiO2,以13 W LED白灯(λ>420 nm)模拟可见光光源,对阿替洛尔进行了光催化降解实验.考察了光源和溶液pH对阿替洛尔降解率的影响,并对光催化氧化阿替洛尔的反应机理进行了研究.结果表明,对TiO2进行钨掺杂改性可使其拥有良好的可见光响应,同时不影响其在紫外光辐照下的反应;阿替洛尔的降解率随溶液pH的升高先增大后减小,在碱性条件下阿替洛尔更容易降解;在光照360 min时,阿替洛尔的降解率达93%,总有机碳(TOC)的降解率为64%,阿替洛尔在完全矿化前首先转化为中间产物;通过LC-MS技术推断出了阿替洛尔在光催化降解中的14种中间产物,并提出了降解途径可能包括醚支链的断裂、羟基化、形成苯甲醛衍生物、官能团的消除和分子间的环化与重组等.
Abstract:
To process the photocatalytic degradation of atenolol, both W-doped TiO2 particles were made through a sol-gel method and a 13 W light-emitting diode lamp(λ>420 nm)was used as a visible light resource. The reaction mechanism of photocatalytic oxidation of atenolol was studied for investigating the influences of the light resource and the solution pH on the degradation rate of atenolol. Experimental results show that the W-doped TiO2 particles have a good visible light response without affecting its reaction under ultraviolet light irradiation. The degradation rate of atenolol increases firstly, and then decreases with the pH increment. Atenolol is relatively easier to be degraded under the alkaline condition. The degradation rates of atenolol and total organic carbon(TOC)are 93% and 64%, respectively after 360 min visible light irradiation. Atenolol is converted into intermediate products before its complete mineralization. Fourteen intermediates in the photocatalytic degradation of atenolol are identified by a liquid chromatograph-mass spectrometer(LC-MS)technique and the possible degradation pathways includes the breakage of ether branched chains, hydroxylation, formation of benzaldehyde derivatives, elimination of functional groups, and intermolecular cyclization and recombination.

参考文献/References:

[1] Jjemba P K. Excretion and ecotoxicity of pharmaceutical and personal care products in the environment[J]. Ecotoxicology and Environmental Safety, 2006, 63(1): 113-130. DOI:10.1016/j.ecoenv.2004.11.011.
[2] Castiglioni S, Bagnati R, Fanelli R, et al. Removal of pharmaceuticals in sewage treatment plants in italy[J]. Environmental Science & Technology, 2006, 40(1): 357-363. DOI:10.1021/es050991m.
[3] Benotti M J, Trenholm R A, Vanderford B J, et al. Pharmaceuticals and endocrine disrupting compounds in US drinking water[J]. Environmental Science & Technology, 2009, 43(3): 597-603. DOI:10.1021/es801845a.
[4] Daneshvar A, Svanfelt J, Kronberg L, et al. Seasonal variations in the occurrence and fate of basic and neutral pharmaceuticals in a Swedish river-lake system[J]. Chemosphere, 2010, 80(3): 301-309. DOI:10.1016/j.chemosphere.2010.03.060.
[5] Valcárcel Y, Alonso S G, Rodríguez-Gil J L, et al. Analysis of the presence of cardiovascular and analgesic/anti-inflammatory/antipyretic pharmaceuticals in river-and drinking-water of the Madrid Region in Spain[J]. Chemosphere, 2011, 82(7): 1062-1071. DOI:10.1016/j.chemosphere.2010.10.041.
[6] Hapeshi E, Achilleos A, Vasquez M I, et al. Drugs degrading photocatalytically: Kinetics and mechanisms of ofloxacin and atenolol removal on titania suspensions[J]. Water Research, 2010, 44(6): 1737-1746. DOI:10.1016/j.watres.2009.11.044.
[7] Ioannou L A, Hapeshi E, Vasquez M I, et al. Solar/TiO2 photocatalytic decomposition of β-blockers atenolol and propranolol in water and wastewater[J]. Solar Energy, 2011, 85(9): 1915-1926. DOI:10.1016/j.solener.2011.04.031.
[8] Ji Y F, Zhou L,Ferronato C, et al. Photocatalytic degradation of atenolol in aqueous titanium dioxide suspensions: Kinetics, intermediates and degradation pathways[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2013, 254: 35-44. DOI:10.1016/j.jphotochem.2013.01.003.
[9] Bhatia V,Malekshoar G, Dhir A, et al. Enhanced photocatalytic degradation of atenolol using graphene TiO2 composite[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2017, 332: 182-187.
[10] Sangkhun W, Laokiat L, Tanboonchuy V, et al. Photocatalytic degradation of BTEX using W-doped TiO2 immobilized on fiberglass cloth under visible light[J]. Superlattices and Microstructures, 2012, 52(4): 632-642. DOI:10.1016/j.spmi.2012.06.026.
[11] Wang Z Y, Lv K, Wang G H, et al. Study on the shape control and photocatalytic activity of high-energy anatase titania[J]. Applied Catalysis B: Environmental, 2010, 100(1/2): 378-385. DOI:10.1016/j.apcatb.2010.08.014.
[12] 刘秀华. 金属离子掺杂二氧化钛光催化剂的改性研究[D]. 北京: 中国工程物理研究院, 2007.
  Liu X H. Study on the modification of photocatalyst doped with metal ions[D]. Beijing: China Academy of Engineering Physics, 2007.(in Chinese)
[13] Khodja A A, Lavedrine B, Richard C, et al. Photocatalytic degradation of metoxuron in aqueous suspensions Of TiO2 analytical and kinetic studies[J]. International Journal of Photoenergy, 2002, 4(4): 147-151. DOI:10.1155/s1110662x0200017x.
[14] 曾超. 溶解性有机质对阿替洛尔在水体中光降解的影响[D]. 南京: 南京大学, 2013.
  Zeng C. The role of dissolved organic matters in the aquatic photodegradation of atenolol[D]. Nanjing: Nanjing University, 2013.(in Chinese)
[15] 季跃飞. 光化学及光催化降解水溶液中药物及个人护理品阿替洛尔和2-苯基苯并咪唑-5-磺酸[D]. 南京: 南京大学, 2014.
  Ji Y F. Photochemical and photocatalytic degradation of pharmaceutical and personal care products(PPCPs)in aqueous solution: A case study of atenolol and2-phenylbenzimidazole-5-sulfonic acid[D]. Nanjing: Nanjing University, 2014.(in Chinese)
[16] Urano Y, Higuchi T, Hirobe M. Substrate-dependent changes of the oxidative O-dealkylation mechanism of several chemical and biological oxidizing systems[J]. Journal of the Chemical Society, Perkin Transactions 2, 1996(6): 1169-1173. DOI:10.1039/p29960001169.
[17] Sirés I, Oturan N, Oturan M A. Electrochemical degradation of β-blockers. Studies on single and multicomponent synthetic aqueous solutions[J]. Water Research, 2010, 44(10): 3109-3120. DOI:10.1016/j.watres.2010.03.005.
[18] Song W H, Cooper W J, Mezyk S P, et al. Free radical destruction of β-blockers in aqueous solution[J]. Environmental Science & Technology, 2008, 42(4): 1256-1261. DOI:10.1021/es702245n.

相似文献/References:

[1]冯小刚,卫涛,袁春伟.饮用水中微囊藻毒素污染及其光催化降解的研究进展[J].东南大学学报(自然科学版),2004,34(5):705.[doi:10.3969/j.issn.1001-0505.2004.05.032]
 Feng Xiaogang,Wei Tao,Yuan Chunwei.Development of studies on microcystins pollution and its photocatalytic degradation in drinking water[J].Journal of Southeast University (Natural Science Edition),2004,34(5):705.[doi:10.3969/j.issn.1001-0505.2004.05.032]
[2]张帆,杜建康,王志良,等.UV-TiO2/硅藻土光催化降解DMF的影响因素分析[J].东南大学学报(自然科学版),2010,40(2):393.[doi:10.3969/j.issn.1001-0505.2010.02.034]
 Zhang Fan,Du Jiankang,Wang Zhiliang,et al.Influential factors for photocatalytic degradation of DMF based on UV-TiO2/diatomite composite catalyst[J].Journal of Southeast University (Natural Science Edition),2010,40(5):393.[doi:10.3969/j.issn.1001-0505.2010.02.034]

备注/Memo

备注/Memo:
收稿日期: 2018-12-06.
作者简介: 李蓓蓓(1993—),女,硕士生;吴磊(联系人),男,副教授,wulei@seu.edu.cn.
基金项目: “十三五”国家科技重大专项资助项目(2017ZX07202-004-005).
引用本文: 李蓓蓓,吴磊,邵云,等.钨掺杂TiO2可见光下去除阿替洛尔的反应特性[J].东南大学学报(自然科学版),2019,49(5):864-872. DOI:10.3969/j.issn.1001-0505.2019.05.008.
更新日期/Last Update: 2019-09-20