[1]蔡文波,张亚.带虚假数据注入攻击识别和通信触发机制的传感器网络分布式估计[J].东南大学学报(自然科学版),2019,49(5):890-896.[doi:10.3969/j.issn.1001-0505.2019.05.011]
 Cai Wenbo,Zhang Ya.Distributed estimation of sensor networks with false data injection attack recognition and communication triggering mechanism[J].Journal of Southeast University (Natural Science Edition),2019,49(5):890-896.[doi:10.3969/j.issn.1001-0505.2019.05.011]
点击复制

带虚假数据注入攻击识别和通信触发机制的传感器网络分布式估计()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
49
期数:
2019年第5期
页码:
890-896
栏目:
计算机科学与工程
出版日期:
2019-09-20

文章信息/Info

Title:
Distributed estimation of sensor networks with false data injection attack recognition and communication triggering mechanism
作者:
蔡文波张亚
东南大学自动化学院, 南京 210096; 东南大学复杂工程系统测量与控制教育部重点实验室, 南京 210096
Author(s):
Cai Wenbo Zhang Ya
School of Automation, Southeast University, Nanjing 210096, China
Key Laboratory of Measurement and Control of Complex Systems of Engineering of Ministry of Education, Southeast University, Nanjing 210096, China
关键词:
虚假数据注入攻击 传感器网络 事件触发 分布式估计
Keywords:
false data injection attacks sensor networks event-trigger distributed estimation
分类号:
TP393
DOI:
10.3969/j.issn.1001-0505.2019.05.011
摘要:
为了改善注入式攻击下传感器网络的分布式滤波性能,并且解决网络通信传输过程存在的能量受限问题,设计了一种带有通信触发机制和攻击检测的分布式滤波算法.通过对传感器节点先验估计数据与实际测量数据之间测量残差的研究,得出传感器节点在遭受注入式攻击时的检测条件,从而去除遭受攻击的数据,保证系统正常运行.传感器节点通过比较最近一次发送的数据与最新测量数据建立事件触发通信机制,决定是否向邻居节点发送数据.仿真结果表明,该算法的攻击识别率高达90%,在降低通信率的同时,仍能够改善系统运行的性能.带有通信触发机制和攻击检测的分布式滤波算法可用于解决存在能量受限和注入式攻击的分布式滤波问题.
Abstract:
To improve the distributed filtering performance of sensor networks under injection attack and solve the problem of energy limitation in network communication transmission process, a distributed filtering algorithm with communication triggering mechanism and attack detection was designed. By studying the measurement residuals between the prior estimated data and the actual measurement data of the sensor node, the detection conditions of the sensor node under injection attack were obtained, so as to remove the attacked data and ensure the normal operation of the system. The sensor node established an event-triggered communication mechanism by comparing the latest data sent to the neighbor node with the new measurement data to decide whether to send data to neighbor nodes. Simulation results show that the algorithm has a high rate of attack recognition up to 90% and can improve the performance of the system while reducing the communication rate. The distributed filtering algorithm with communication triggering mechanism and attack detection can be used to solve distributed filtering problems with energy limitation and injection attack.

参考文献/References:

[1] 王琦,邰伟,汤奕,等.面向电力信息物理系统的虚假数据注入攻击研究综述[J].自动化学报,2019,45(1): 72-83.
  Wang Q, Tai W, Tang Y, et al. A review on false data injection attack toward cyber-physical power system[J]. Acta Automatica Sinica, 2019, 45(1): 72-83.(in Chinese)
[2] Ren X Q, Wu J F, Dey S, et al. Attack allocation on remote state estimation in multi-systems: Structural results and asymptotic solution[J]. Automatica, 2018, 87: 184-194. DOI:10.1016/j.automatica.2017.09.021.
[3] Li L, Zhang H X, Xia Y Q, et al. Security estimation under denial-of-service attack with energy constraint[J]. Neurocomputing, 2018, 292: 111-120. DOI:10.1016/j.neucom.2018.02.086.
[4] Ding K M, Li Y Z, Quevedo D E, et al. A multi-channel transmission schedule for remote state estimation under DoS attacks[J]. Automatica, 2017, 78: 194-201. DOI:10.1016/j.automatica.2016.12.020.
[5] Chang Y H, Hu Q, Tomlin C J. Secure estimation based Kalman Filter for cyber-physical systems against sensor attacks[J]. Automatica, 2018, 95: 399-412. DOI:10.1016/j.automatica.2018.06.010.
[6] 彭大天,董建敏,蔡忠闽,等.假数据注入攻击下信息物理融合系统的稳定性研究[J].自动化学报,2019,45(1):196-205. DOI:10.16383/j.aas.2018.c180331.
Peng D T, Dong J M, Cai Z M, et al. On the stability of cyber-physical systems under false data injection attacks[J]. Acta Automatica Sinica, 2019, 45(1): 196-205. DOI:10.16383/j.aas.2018.c180331. (in Chinese)
[7] 敖伟,宋永端,温长云.受攻击信息物理系统的分布式安全状态估计与控制:一种有限时间方法[J].自动化学报,2019,45(1):174-184. DOI:10.16383/j.aas.c180385.
Ao W, Song Y D, Wen C Y. Distributed secure state estimation and control for CPSs under sensor attacks: A finite time approach[J]. Acta Automatica Sinica, 2019, 45(1): 174-184. DOI:10.16383/j.aas.c180385. (in Chinese)
[8] Guo Z Y, Shi D W, Johansson K H, et al. Worst-case stealthy innovation-based linear attack on remote state estimation[J]. Automatica, 2018, 89: 117-124. DOI:10.1016/j.automatica.2017.11.018.
[9] Anderson B D O, Moore J B, Eslami M. Optimal filtering[J]. IEEE Transactions on Systems, Man, and Cybernetics, 1982, 12(2): 235-236. DOI:10.1109/tsmc.1982.4308806.
[10] Hu L, Wang Z D, Han Q L, et al. State estimation under false data injection attacks: Security analysis and system protection[J]. Automatica, 2018, 87: 176-183. DOI:10.1016/j.automatica.2017.09.028.
[11] Mo Y L, Sinopoli B. On the performance degradation of cyber-physical systems under stealthy integrity attacks[J]. IEEE Transactions on Automatic Control, 2016, 61(9): 2618-2624. DOI:10.1109/tac.2015.2498708.
[12] Ding D R, Wang Z D, Ho D W C, et al. Distributed recursive filtering for stochastic systems under uniform quantizations and deception attacks through sensor networks[J]. Automatica, 2017, 78: 231-240. DOI:10.1016/j.automatica.2016.12.026.
[13] Battistelli G, Chisci L, Selvi D. A distributed Kalman filter with event-triggered communication and guaranteed stability[J]. Automatica, 2018, 93: 75-82. DOI:10.1016/j.automatica.2018.03.005.
[14] Tan X G, Cao J D, Li X D. Consensus of leader-following multiagent systems:A distributed event-triggered impulsive control strategy[J]. IEEE Transactions on Cybernetics, 2019, 49(3): 792-801. DOI:10.1109/tcyb.2017.2786474.
[15] Leong A S, Dey S, Quevedo D E. Sensor scheduling in variance based event triggered estimation with packet drops[J]. IEEE Transactions on Automatic Control, 2017, 62(4): 1880-1895. DOI:10.1109/tac.2016.2602499.
[16] Battistelli G, Chisci L. Kullback-Leibler average, consensus on probability densities, and distributed state estimation with guaranteed stability[J]. Automatica, 2014, 50(3): 707-718. DOI:10.1016/j.automatica.2013.11.042.

相似文献/References:

[1]苏瀚,汪芸.传感器网络中节点调度的优化方法[J].东南大学学报(自然科学版),2010,40(1):29.[doi:10.3969/j.issn.1001-0505.2010.01.006]
 Su Han,Wang Yun.Optimization method for node scheduling sensor networks[J].Journal of Southeast University (Natural Science Edition),2010,40(5):29.[doi:10.3969/j.issn.1001-0505.2010.01.006]

备注/Memo

备注/Memo:
收稿日期: 2019-03-29.
作者简介: 蔡文波(1996—),男,硕士生;张亚(联系人),女,博士,副教授,yazhang@seu.edu.cn.
基金项目: 国家自然科学基金资助项目(61973082)、江苏省“六大人才高峰”资助项目(XYDXX-005).
引用本文: 蔡文波,张亚.带虚假数据注入攻击识别和通信触发机制的传感器网络分布式估计[J].东南大学学报(自然科学版),2019,49(5):890-896. DOI:10.3969/j.issn.1001-0505.2019.05.011.
更新日期/Last Update: 2019-09-20