[1]林煜,杨森,郭正兴,等.双拼工字型钢板阻尼器滞回性能试验研究[J].东南大学学报(自然科学版),2019,49(5):911-917.[doi:10.3969/j.issn.1001-0505.2019.05.014]
 Lin Yu,Yang Sen,Guo Zhengxing,et al.Experimental study on hysteretic behaviors of duplex assembled I-shaped steel panel dampers[J].Journal of Southeast University (Natural Science Edition),2019,49(5):911-917.[doi:10.3969/j.issn.1001-0505.2019.05.014]
点击复制

双拼工字型钢板阻尼器滞回性能试验研究()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
49
期数:
2019年第5期
页码:
911-917
栏目:
土木工程
出版日期:
2019-09-20

文章信息/Info

Title:
Experimental study on hysteretic behaviors of duplex assembled I-shaped steel panel dampers
作者:
林煜杨森郭正兴管东芝
东南大学土木工程学院, 南京 210096
Author(s):
Lin Yu Yang Sen Guo Zhengxing Guan Dongzhi
School of Civil Engineering, Southeast University, Nanjing 210096, China
关键词:
剪切型钢板阻尼器 屈曲约束 双拼工字型 滞回性能
Keywords:
shear steel panel dampers buckling restraint duplex assembled I-shape hysteretic behavior
分类号:
TU352.1;TU392.4
DOI:
10.3969/j.issn.1001-0505.2019.05.014
摘要:
为解决传统剪切型钢板阻尼器造价高、易出现面外屈曲和连接焊缝撕裂的问题,设计制作了一种双拼工字型钢板阻尼器.该阻尼器由Q235热轧H型钢开斜洞制成的2个槽形钢相背而拼形成,通过槽形钢腹板剪切变形耗能.采用拟静力试验,研究了5个双拼工字型阻尼器试件的滞回性能.结果表明:增加腹板宽度可提高阻尼器的承载和耗能能力,高且窄的开洞形式可提高阻尼器极限位移74.4%;无连接弧板的腹板约束形式可提高延性70%,超强系数至少达到1.70.双拼工字型钢板阻尼器能够有效限制耗能腹板的平面外变形,具有稳定的耗能能力,同时可避免焊缝破坏.
Abstract:
A duplex assembled I-shaped steel panel damper(DAISPD)was designed to avoid the disadvantages of traditional shear steel panel dampers including high cost, easy out-of-plane deformation and premature weld failure. Based on Q235 hot-rolled H-beams, the DAISPD was assembled by two channel-like steels back to back with webs holed obliquely and dissipate energy through shear deformation. The pseudo-static tests for five specimens were carried out to investigate the hysteretic behavior of DAISPD. The results indicate that the increase of the web width can improve bearing capacity and energy dissipation capacity. With openings high and narrow, the ultimate displacement of the DAISPD can be increased by 74.4%. The web restraint form without a connection arc plate can increase the ductility by 70% and the over-strength coefficient reaches at least 1.70. DAISPD can restrain out-of-plane buckling deformation of webs. Thus, it has stable energy dissipation capacity and avoids weld damage.

参考文献/References:

[1] Seki M, Katsumata H, Uchida H, et al. Study on earthquake response of two-storied steel frame with Y-shaped braces[C]// International Association of Earthquake Engineering. Tokyo, Japan: Building Research Institute, 1988: 65-70.
[2] Hitaka T, Matsui C. Experimental study on steel shear wall with slits[J]. Journal of Structural Engineering, 2003, 129(5): 586-595. DOI:10.1061/(asce)0733-9445(2003)129:5(586).
[3] 袁新禧, 郑杰, 李爱群, 等. 带竖缝及金属阻尼器混凝土剪力墙抗震性能试验研究[J]. 工程抗震与加固改造, 2014, 36(6): 7-12, 65. DOI:10.3969/j.issn.1002-8412.2014.06.002.
Yuan X X, Zheng J, Li A Q, et al. Experimental study on seismic performance of concrete shear walls with metal damper in vertical gaps[J]. Earthquake Resistant Engineering and Retrofitting, 2014, 36(6): 7-12, 65. DOI:10.3969/j.issn.1002-8412.2014.06.002. (in Chinese)
[4] 袁新禧, 潘志宏, 李爱群, 等. 带竖缝及金属阻尼器混凝土剪力墙抗震性能研究[J]. 土木工程学报, 2014, 47(S1): 118-123. DOI:10.15951/j.tmgcxb.2014.s1.021.
Yuan X X, Pan Z H, Li A Q, et al. Analysis of the slit and metallic dampers concrete shear wall seismic performance[J]. China Civil Engineering Journal, 2014, 47(S1): 118-123. DOI:10.15951/j.tmgcxb.2014.s1.021. (in Chinese)
[5] 薛子蓬, 王庆杰, 王培军. 双层斜开槽钢板剪力墙受力性能研究[J]. 建筑钢结构进展, 2018, 20(5): 1-10. DOI:10.13969/j.cnki.cn31-1893.2018.05.001.
Xue Z P, Wang Q J, Wang P J. Mechanical behavior of steel plate shear wall with two-layer incline-slotted infill plates[J]. Progress in Steel Building Structures, 2018, 20(5): 1-10. DOI:10.13969/j.cnki.cn31-1893.2018.05.001. (in Chinese)
[6] Vian D, Bruneau M, Purba R. Special perforated steel plate shear walls with reduced beam section anchor beams. Ⅱ: Analysis and design recommendations[J]. Journal of Structural Engineering, 2009, 135(3): 221-228. DOI:10.1061/(asce)0733-9445(2009)135:3(221).
[7] Purba R, Bruneau M. Finite-element investigation and design recommendations for perforated steel plate shear walls[J]. Journal of Structural Engineering, 2009, 135(11): 1367-1376. DOI:10.1061/(asce)st.1943-541x.0000061.
[8] Ghabraie K, Chan R, Huang X D, et al. Shape optimization of metallic yielding devices for passive mitigation of seismic energy[J]. Engineering Structures, 2010, 32(8): 2258-2267. DOI:10.1016/j.engstruct.2010.03.028.
[9] 孔子昂, 王涛, 施唯. 带缝钢板阻尼器受力性能试验研究[J]. 土木工程学报, 2015, 48(9): 11-22. DOI:10.15951/j.tmgcxb.2015.09.002.
Kong Z A, Wang T, Shi W. Experimental study on mechanical properties of steel dampers with slits[J]. China Civil Engineering Journal, 2015, 48(9): 11-22. DOI:10.15951/j.tmgcxb.2015.09.002. (in Chinese)
[10] Chan R W K,Albermani F, Kitipornchai S. Experimental study of perforated yielding shear panel device for passive energy dissipation[J]. Journal of Constructional Steel Research, 2013, 91: 14-25. DOI:10.1016/j.jcsr.2013.08.013.
[11] Lin X C, Wu K L,Skalomenos K A, et al. Development of a buckling-restrained shear panel damper with demountable steel-concrete composite restrainers[J]. Soil Dynamics and Earthquake Engineering, 2019, 118: 221-230. DOI:10.1016/j.soildyn.2018.12.015.
[12] 刘伟庆, 缪卓君, 王曙光, 等. 新型分阶段屈服型软钢阻尼器的试验研究及数值模拟[J]. 振动与冲击, 2016, 35(3): 87-92. DOI:10.13465/j.cnki.jvs.2016.03.014.
Liu W Q, Miao Z J, Wang S G, et al. Experiments and numerical prediction on a new type of mild steel damper with separable phase yielding[J]. Journal of Vibration and Shock, 2016, 35(3): 87-92. DOI:10.13465/j.cnki.jvs.2016.03.014. (in Chinese)
[13] 马宁, 苏利刚. 剪切型防屈曲钢板阻尼器的滞回性能试验研究[J]. 建筑结构学报, 2018, 39(11): 148-157. DOI:10.14006/j.jzjgxb.2018.11.017.
Ma N, Su L G. Experimental study on hysteretic behavior of shear type buckling restrained shear panel dampers[J]. Journal of Building Structures, 2018, 39(11): 148-157. DOI:10.14006/j.jzjgxb.2018.11.017. (in Chinese)
[14] Liu Y, Aoki T, Takaku T, et al. Cyclic loading test of shear panel damper made of low yield steel[J]. Journal of Structural Engineering, 2007, 53A: 560-567. DOI: 10.11532/ structcivil.53A.560.
[15] Xu L Y, Nie X, Fan J S. Cyclic behaviour of low-yield-point steel shear panel dampers[J]. Engineering Structures, 2016, 126: 391-404. DOI:10.1016/j.engstruct.2016.08.002.
[16] Deng K L, Pan P, Li W, et al. Development of a buckling restrained shear panel damper[J].Journal of Constructional Steel Research, 2015, 106: 311-321. DOI:10.1016/j.jcsr.2015.01.004.
[17] 黄镇, 李芮秋, 刘峰, 等. 改进型防屈曲剪切钢板阻尼器受力性能研究[J]. 建筑结构学报, 2016, 37(6): 85-92. DOI:10.14006/j.jzjgxb.2016.06.011.
Huang Z, Li R Q, Liu F, et al. Research on mechanical performance of improved buckling restrained shear panel damper[J]. Journal of Building Structures, 2016, 37(6): 85-92. DOI:10.14006/j.jzjgxb.2016.06.011. (in Chinese)
[18] 中华人民共和国住房和城乡建设部. GB50011—2010 建筑抗震设计规范[M]. 北京: 中国建筑工业出版社, 2010.
[19] Park R. Evaluation of ductility of structures and structural assemblages from laboratory testing[J]. Bulletin of the New Zealand National Society for Earthquake Engineering, 1989, 22(3): 155-166.
[20] 中华人民共和国住房和城乡建设部. JGJ /T 101—2015 建筑抗震试验规程[S]. 北京:中国建筑工业出版社, 2015.

备注/Memo

备注/Memo:
收稿日期: 2019-03-26.
作者简介: 林煜(1993—),男,博士生;郭正兴(联系人),男,博士,教授,博士生导师,guozx195608@126.com.
基金项目: “十三五”国家重点研发计划资助项目(2016YFC0701703)、国家自然科学基金资助项目(51808109)、江苏省自然科学基金资助项目(BK20180385).
引用本文: 林煜,杨森,郭正兴,等.双拼工字型钢板阻尼器滞回性能试验研究[J].东南大学学报(自然科学版),2019,49(5):911-917. DOI:10.3969/j.issn.1001-0505.2019.05.014.
更新日期/Last Update: 2019-09-20